【題目】如圖,四邊形是以原點為對稱中心的矩形,,分別與軸交于點、,連接

1)寫出點和點的坐標;

2)求四邊形的面積;

3)判斷點在矩形的內部還是外部;

4)要使直線與矩形沒有公共點,直接寫出的取值范圍.

【答案】1;(25;(3)點在矩形的內部;(4

【解析】

解:(1)∵四邊形ABCD是以原點O為對稱中心的矩形,

∴點A和點C、點B和點D關于原點對稱,

,

,;

2)設直線CD的解析式為,

將點C、D的坐標分別代入

解得,

∴直線CD的解析式為

時,

,

,,,

,,

如解圖,過點O,垂足分別為點MN,

∵四邊形ABCD為矩形,

,

如解圖,連接OC,

;

3)在直線CD的解析式上,當時,,

,

∴點在點的上方,

又∵,

∴點在矩形的內部;

4 .

【解法提示】當直線AC點時,直線與矩形只有一個公共點,

代入,得,解得,

代入,得,解得,

∴當直線與矩形ABCD沒有公共點時,m的取值范圍為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,扇形OAB中,AOB=100°,OA=12,C是OB的中點,CDOB交于點D,以OC為半徑的交OA于點E,則圖中陰影部分的面積是( 。

A. 12π+18 B. 12π+36 C. 6π+18 D. 6π+36

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標,將線段繞點按順時針方向旋轉45°,再將其長度伸長為2倍,得到線段;又將線段繞點按順時針方向旋轉45°,長度伸長為2倍,得到線段;如此下去,得到線段,……,為正整數(shù)),則點的坐標是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,過點B的直線與拋物線的另一個交點為D,與拋物線的對稱軸交于點E,與y軸交于點F,且,OBE的面積為

1)求拋物線的解析式;

2)設P為已知拋物線上的任意一點,當ACP的面積等于ACB的面積時,求點P的坐標;

3)點Q0m)是y軸上的動點,連接AQBQ,當∠AQB為鈍角時,則m的取值范圍是   .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點,正比例函數(shù)的圖象l2l1交于點C(m,4).

(1)求m的值及l2的解析式;

(2)求SAOC﹣SBOC的值;

(3)一次函數(shù)y=kx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2ax2aa為常數(shù)且不等于0)與x軸的交點為A,B兩點,且A點在B的右側.

1)當拋物線經(jīng)過點(3,8),求a的值;

2)求AB兩點的坐標;

3)若拋物線的頂點為M,且點Mx軸的距離等于AB3倍,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是根據(jù)某市2010年至2014年工業(yè)生產(chǎn)總值繪制的折線統(tǒng)計圖,觀察統(tǒng)計圖獲得以下信息,其中信息判斷錯誤的是(

A.2010年至2014年間工業(yè)生產(chǎn)總值逐年增加

B.2014年的工業(yè)生產(chǎn)總值比前一年增加了40億元

C.2012年與2013年每一年與前一年比,其增長額相同

D.從2011年至2014年,每一年與前一年比,2014年的增長率最大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】假期里,小紅和小惠去買菜,三次購買的西紅柿價格和數(shù)量如下表:

單價/(元/千克)

4

3

2

合計

小紅購買的數(shù)量/千克

1

2

3

6

小惠購買的數(shù)量/千克

2

2

2

6

1)小紅和小惠購買西紅柿數(shù)量的中位數(shù)、眾數(shù)是多少?

2)從平均價格看,誰買的西紅柿要便宜些.請思考下面小亮和小明的說法,你認為誰說得對?為什么?

小亮的說法

每次購買單價相同,購買總量也相同,平均價格應該也一樣,都是(元/千克),所以兩人購買的西紅柿一樣便宜.

小明的說法

購買的總量雖然相同,但小紅花了16元,小惠花了18元,平均價格不一樣,所以小紅購買的西紅柿便宜.

3)小明在直角坐標系中畫出反比例函數(shù)的圖象,圖象經(jīng)過點(如圖),點的橫、縱坐標分別為小紅和小惠購買西紅柿價格的平均數(shù).

①求此反比例函數(shù)的關系式;

②判斷點是否在此函數(shù)圖象上.

查看答案和解析>>

同步練習冊答案