【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.

(1)求此拋物線的解析式;

(2)直接寫出點C和點D的坐標;

(3)若點P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點坐標.

【答案】(1)y=﹣x2+2x+3;(2) C(0,3),D(1,4);(3) P(2,3)

【解析】試題分析:(1)將A、B的坐標代入拋物線的解析式中,即可求出待定系數(shù)b、c的值,進而可得到拋物線的對稱軸方程;

2)令x=0,可得C點坐標,將函數(shù)解析式配方即得拋物線的頂點C的坐標;

3)設Pxy)(x0,y0),根據(jù)題意列出方程即可求得y,即得D點坐標.

1)由點A1,0)和點B3,0)得 ,解得: ,拋物線的解析式為;

2)令x=0,則y=3,C0,3),=x12+4,D1,4);

3)設Px,y)(x0y0),SCOE=×1×3=,SABP=×4y=2ySABP=4SCOE,2y=4×y=3,∴﹣x2+2x+3=3,解得:x1=0(不合題意,舍去),x2=2,P2,3).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】今年水果大豐收,A,B兩個水果基地分別收獲水果380件、320件,現(xiàn)需把這些水果全部運往甲、乙兩銷售點,從A基地運往甲、乙兩銷售點的費用分別為每件40元和20元,從B基地運往甲、乙兩銷售點的費用分別為每件15元和30元,現(xiàn)甲銷售點需要水果400件,乙銷售點需要水果300件.

(1)設從A基地運往甲銷售點水果x件,總運費為W元,請用含x的代數(shù)式表示W,并寫出x的取值范圍;

(2)若總運費不超過18300元,且A地運往甲銷售點的水果不低于200件,試確定運費最低的運輸方案,并求出最低運費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:

如圖,二次函數(shù)y=﹣x2+x+4的圖象與x軸交于點B,點C(點B在點C的左邊),與y軸交于點A,連接AC,AB.

(1)求證:AO2=BOCO;

(2)若點N在線段BC上運動(不與點B,C重合),過點N作MN∥AC,交AB于點M,求當△AMN的面積取得最大值時,直線AN的表達式.

(3)連接OM,在(2)的結(jié)論下,試判斷OM與AN的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知ABC的三個頂點的坐標分別為A-3-1),B-4-3),C-2,-3).

1)畫出將ABC向上平移5個單位得到的A1B1C1,并寫出點B1的坐標;

2)畫出ABC關(guān)于點O成中心對稱的圖形A2B2C2,并寫出點B2的坐標;

3)觀察圖形,A1B1C1A2B2C2成中心對稱嗎?如果成中心對稱,那么對稱中心的坐標為_____;如果不成中心對稱,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OABC為矩形,以點O為原點建立直角坐標系,點Cx軸的正半軸上,點Ay軸的正半軸上,反比例函數(shù)y=圖象經(jīng)過AB的中點D1,3),且與BC交于點E,設直線DE的解析式為y=mx+n

1)求k的值和點E的坐標;

2)直接寫出不等式-nmx的解集;

3)點Qx軸上一點,點P為反比例函數(shù)y=圖象上一點,是否存在點P、Q,使得以P、QD、E為頂點的四邊形為平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校機器人興趣小組在如圖所示的矩形場地上開展訓練,機器人從點A出發(fā),在矩形ABCD邊上沿著A→B→C→D的方向勻速移動,到達點D時停止移動,已知AD=6個單位長度,機器人的速度為1個單位長度/s且其移動至拐角處調(diào)整方向所需時間忽略不計.設機器人所用時間為ts)時,其所在位置用點P表示,P到對角線BD的距離(即垂線段PQ的長)為d個單位長度,其中dt的函數(shù)圖象如圖所示.

1)圖中函數(shù)圖象與縱軸的交點的縱坐標在圖中表示一條線段的長,請在圖中畫出這條線段.

2)求圖a的值;

3)如圖,點MN分別在線段EF、GH上,線段MN平行于橫軸,MN的橫坐標分別為t1、t2.設機器人用了t1s)到達點P1處,用了t2s)到達點P2處(見圖).若CP1+CP2=7,求t1、t2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列關(guān)于、的單項式的特點:,,……按此規(guī)律,第10個單項式是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個二次函數(shù)圖象上部分點的橫坐標與縱坐標的對應值如表所示:

3

2

1

0

1

0

3

4

3

0

(1)求這個二次函數(shù)的表達式;

(2)在給定的平面直角坐標系中畫出這個二次函數(shù)的圖象;

(3)時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D、E、F分別是邊AB、ACBC的中點,且BC=2AF。

1)求證:四邊形ADEF為矩形;

2)若∠C=30°、AF=2,寫出矩形ADEF的周長。

查看答案和解析>>

同步練習冊答案