以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側(cè)作等腰直角三角形,直角頂點分別為E、F、G、H,順次連結(jié)這四個點得四邊形EFGH.如圖,當(dāng)四邊形ABCD為正方形時,我們發(fā)現(xiàn)四邊形EFGH是正方形;
(1)如圖,當(dāng)四邊形ABCD為矩形時,則四邊形EFGH的形狀是________;
(2)如圖,當(dāng)四邊形ABCD為一般平行四邊形時,設(shè)∠ADC=α(0°<α<90°),
①試用含α的代數(shù)式表示∠HAE=________;
②求證:HE=HG;
③四邊形EFGH是什么四邊形?并說明理由.
(1)答:四邊形EFGH的形狀是正方形 1分 (2)解:①∠HAE=90°+a 2分 、谧C明:∵△AEB和△DGC是等腰直角三角形,∴AE=AB,DG=CD, 在平行四邊形ABCD中,AB=CD,∴AE=DG 3分 ∵△HAD和△GDC是等腰直角三角形,∴∠HDA=∠CDG=45°, ∴∠HDG=∠HDA+∠ADC+∠CDG=90°+a=∠HAE 4分 ∵△HAD是等腰直角三角形,∴HA=HD, ∴△HAE≌△HDG 5分 ∴HE=HG 6分 、鄞穑核倪呅蜤FGH是正方形 7分 理由是:由②同理可得:GH=GF,F(xiàn)G=FE 8分 ∵HE=HG,∴GH=GF=EF=HE, ∴四邊形EFGH是菱形 9分 ∵△HAE≌△HDG,∴∠DHG=∠AHE, ∵∠AHD=∠AHG+∠DHG=90°,∴∠EHG=∠AHG+∠AHE=90°, ∴四邊形EFGH是正方形 10分 |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年江蘇省蘇州張家港市第二中學(xué)八年級上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(本題10分) 以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側(cè)作等腰直角三角形,直角頂點分別為E、F、G、H,順次連結(jié)這四個點得四邊形EFGH.如圖1,當(dāng)四邊形ABCD為正方形時,我們發(fā)現(xiàn)四邊形EFGH是正方形;
【小題1】(1)如圖2,當(dāng)四邊形ABCD為矩形時,則四邊形EFGH的形狀是 ;(1分)
【小題2】(2)如圖3,當(dāng)四邊形ABCD為一般平行四邊形時,設(shè)∠ADC=(0°<<90°),
【小題3】① 試用含的代數(shù)式表示∠HAE= ;(1分)
【小題4】② 求證:HE=HG;(4分)③ 四邊形EFGH是什么四邊形?并說明理由.(4分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年江蘇省蘇州張家港市八年級上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(本題10分) 以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側(cè)作等腰直角三角形,直角頂點分別為E、F、G、H,順次連結(jié)這四個點得四邊形EFGH.如圖1,當(dāng)四邊形ABCD為正方形時,我們發(fā)現(xiàn)四邊形EFGH是正方形;
1.(1)如圖2,當(dāng)四邊形ABCD為矩形時,則四邊形EFGH的形狀是 ;(1分)
2.(2)如圖3,當(dāng)四邊形ABCD為一般平行四邊形時,設(shè)∠ADC=(0°<<90°),
3.① 試用含的代數(shù)式表示∠HAE= ;(1分)
4.② 求證:HE=HG;(4分)③ 四邊形EFGH是什么四邊形?并說明理由.(4分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com