(2010•南寧)如圖所示,點A1,A2,A3在x軸上,且OA1=A1A2=A2A3,分別過點A1,A2,A3作y軸的平行線,與反比例函數(shù)y=(x>0)的圖象分別交于點B1,B2,B3,分別過點B1,B2,B3作x軸的平行線,分別于y軸交于點C1,C2,C3,連接OB1,OB2,OB3,那么圖中陰影部分的面積之和為   
【答案】分析:先根據(jù)反比例函數(shù)上的點向x軸y軸引垂線形成的矩形面積等于反比例函數(shù)的k值得到S△OB1C1=S△OB2C2=S△OB3C3=k=4,再根據(jù)相似三角形的面積比等于相似比的平方得到3個陰影部分的三角形的面積從而求得面積和.
解答:解:根據(jù)題意可知S△OB1C1=S△OB2C2=S△OB3C3=k=4
∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y軸
設(shè)圖中陰影部分的面積從左向右依次為s1,s2,s3
則s1=k=4,
∵OA1=A1A2=A2A3,
∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9
∴圖中陰影部分的面積分別是s1=4,s2=1,s3=
∴圖中陰影部分的面積之和=4+1+=
故答案為:
點評:此題綜合考查了反比例函數(shù)的性質(zhì),此題難度稍大,綜合性比較強,注意反比例函數(shù)上的點向x軸y軸引垂線形成的矩形面積等于反比例函數(shù)的k值.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•南寧)如圖,把拋物線y=-x2(虛線部分)向右平移1個單位長度,再向上平移1個單位長度,得出拋物線l1,拋物線l2與拋物線l1關(guān)于y軸對稱.點A,O,B分別是拋物線l1,l2與x軸的交點,D,C分別是拋物線l1,l2的頂點,線段CD交y軸于點E.
(1)分別寫出拋物線l1與l2的解析式;
(2)設(shè)P使拋物線l1上與D,O兩點不重合的任意一點,Q點是P點關(guān)于y軸的對稱點,試判斷以P,Q,C,D為頂點的四邊形是什么特殊的四邊形?請說明理由.
(3)在拋物線l1上是否存在點M,使得S△ABM=S四邊形AOED?如果存在,求出M點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣西南寧市中考數(shù)學試卷(解析版) 題型:解答題

(2010•南寧)如圖,把拋物線y=-x2(虛線部分)向右平移1個單位長度,再向上平移1個單位長度,得出拋物線l1,拋物線l2與拋物線l1關(guān)于y軸對稱.點A,O,B分別是拋物線l1,l2與x軸的交點,D,C分別是拋物線l1,l2的頂點,線段CD交y軸于點E.
(1)分別寫出拋物線l1與l2的解析式;
(2)設(shè)P使拋物線l1上與D,O兩點不重合的任意一點,Q點是P點關(guān)于y軸的對稱點,試判斷以P,Q,C,D為頂點的四邊形是什么特殊的四邊形?請說明理由.
(3)在拋物線l1上是否存在點M,使得S△ABM=S四邊形AOED?如果存在,求出M點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圓》(07)(解析版) 題型:填空題

(2010•南寧)如圖,AB為半圓O的直徑,OC⊥AB,OD平分∠BOC,交半圓于點D,AD交OC于點E,則∠AEO的度數(shù)是    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣西南寧市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•南寧)如圖,從地面豎直向上拋出一個小球,小球的高度h(單位:m)與小球運動時間t(單位:s)之間的關(guān)系式為h=30t-5t2,那么小球從拋出至回落到地面所需要的時間是( )

A.6s
B.4s
C.3s
D.2s

查看答案和解析>>

同步練習冊答案