【題目】如圖,四邊形中,平分,,為的中點(diǎn),
(1)求證:;
(2)求證:;
(3)若,求的值.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)
【解析】
(1)由∠DAC=∠CAB,∠ADC=∠ACB=90°,可得;(2)根據(jù)直角三角形斜邊上中線性質(zhì)得∠EAC=∠ECA,證∠DAC=∠ECA,可得;(3)證△AFD∽△CFE,根據(jù)相似三角形性質(zhì)可得:AD:CE=AF:CF.
(1)證明:∵AC平分∠DAB,
∴∠DAC=∠CAB,
∵∠ADC=∠ACB=90°,
∴△ACD∽△ABC,
(2)證明:∵E為AB的中點(diǎn),
∴CE=AB=AE,
∴∠EAC=∠ECA,
∵∠DAC=∠CAB,
∴∠DAC=∠ECA,
∴CE∥AD;
(3)解:∵CE∥AD,
∴△AFD∽△CFE,
∴AD:CE=AF:CF,
∵CE=AB,
∴CE=×6=3,
∵AD=4,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,AB⊥BC于點(diǎn)B,底座BC=1.3米,底座BC與支架AC所成的角∠ACB=60°,點(diǎn)H在支架AF上,籃板底部支架EH∥BC.EF⊥EH于點(diǎn)E,已知AH=米,HF=米,HE=1米.
(1)求籃板底部支架HE與支架AF所成的∠FHE的度數(shù).
(2)求籃板底部點(diǎn)E到地面的距離,(精確到0.01米)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為8,點(diǎn)O是AD上一個(gè)定點(diǎn),A0=5,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)的速度,按照A-B-C-D的方向,在正方形的邊上運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為1 (秒),當(dāng)t的值為________時(shí), △AOP是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與交于點(diǎn)A.過(guò)點(diǎn)A作軸的垂線,分別交兩條拋物線于點(diǎn)B、C(點(diǎn)B在點(diǎn)A左側(cè),點(diǎn)C在點(diǎn)A右側(cè)),則線段BC的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:如果y′=,那么稱(chēng)點(diǎn)Q為點(diǎn)P的“伴隨點(diǎn)”.
例如:點(diǎn)(5,6)的“伴隨點(diǎn)”為點(diǎn)(5,6);點(diǎn)(﹣5,6)的“伴隨點(diǎn)”為點(diǎn)(﹣5,﹣6).
(1)直接寫(xiě)出點(diǎn)A(2,1)的“伴隨點(diǎn)”A′的坐標(biāo).
(2)點(diǎn)B(m,m+1)在函數(shù)y=kx+3的圖象上,若其“伴隨點(diǎn)”B′的縱坐標(biāo)為2,求函數(shù)y=kx+3的解析式.
(3)點(diǎn)C、D在函數(shù)y=﹣x2+4的圖象上,且點(diǎn)C、D關(guān)于y軸對(duì)稱(chēng),點(diǎn)D的“伴隨點(diǎn)”為D′.若點(diǎn)C在第一象限,且CD=DD′,求此時(shí)“伴隨點(diǎn)”D′的橫坐標(biāo).
(4)點(diǎn)E在函數(shù)y=﹣x2+n(﹣1≤x≤2)的圖象上,若其“伴隨點(diǎn)”E′的縱坐標(biāo)y′的最大值為m(1≤m≤3),直接寫(xiě)出實(shí)數(shù)n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點(diǎn)E為AB的中點(diǎn),DE∥BC.
(1)求證:BD平分∠ABC;
(2)連接EC,若∠A=30°,DC,求EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著新冠肺炎在全球蔓延,糧食安全與國(guó)際糧食貿(mào)易等問(wèn)題再次引起廣泛的關(guān)注,2020年4月4日,國(guó)務(wù)院聯(lián)防聯(lián)控機(jī)制召開(kāi)新聞發(fā)布會(huì),介紹疫情期間糧食供給和保障工作情況,農(nóng)業(yè)農(nóng)村部發(fā)展規(guī)劃司魏百剛給出了定心丸:“我國(guó)糧食連年豐收,已連續(xù)5年穩(wěn)定在1.3萬(wàn)億斤以上,口糧保障絕對(duì)安全”,1.3萬(wàn)億用科學(xué)記數(shù)法表示為( ).
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖象中所反映的過(guò)程是:小敏從家跑步去體育場(chǎng),在那里鍛煉了一陣后,又去早餐店吃早餐,然后散步走回家,其中表示時(shí)間,表示小敏離家的距離,根據(jù)圖象提供的信息,以下說(shuō)法錯(cuò)誤的是( )
A. 體育場(chǎng)離小敏家2.5千米B. 體育場(chǎng)離早餐店4千米
C. 小敏在體育場(chǎng)鍛煉了15分鐘D. 小敏從早餐店回到家用時(shí)30分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為的等邊三角形,邊在射線上,且,點(diǎn)從點(diǎn)出發(fā),沿OM的方向以1cm/s的速度運(yùn)動(dòng),當(dāng)D不與點(diǎn)A重合時(shí),將繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)60°得到,連接DE.
(1)如圖1,求證:是等邊三角形;
(2)如圖2,當(dāng)6<t<10時(shí),DE是否存在最小值?若存在,求出DE的最小值;若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)D在射線OM上運(yùn)動(dòng)時(shí),是否存在以D,E,B為頂點(diǎn)的三角形是直角三角形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com