D為等腰Rt△ABC斜邊AB的中點(diǎn),DM⊥DN,DM,DN分別交BC,CA于點(diǎn)E,F(xiàn).
(1)當(dāng)∠MDN繞點(diǎn)D轉(zhuǎn)動(dòng)時(shí),求證:DE=DF.
(2)若AB=2,求四邊形DECF的面積.

【答案】分析:(1)連CD,根據(jù)等腰直角三角形的性質(zhì)得到CD平分∠ACB,CD⊥AB,∠A=45°,CD=DA,則∠BCD=45°,∠CDA=90°,由DM⊥DN得∠EDF=90°,根據(jù)等角的余角相等得到∠CDE=∠ADF,根據(jù)全等三角形的判定易得△DCE≌△ADF,即可得到結(jié)論;
(2)由△DCE≌△ADF,則S△DCE=S△ADF,于是四邊形DECF的面積=S△ACD,由而AB=2可得CD=DA=1,根據(jù)三角形的面積公式易求得S△ACD,從而得到四邊形DECF的面積.
解答:解:(1)連CD,如圖,
∵D為等腰Rt△ABC斜邊AB的中點(diǎn),
∴CD平分∠ACB,CD⊥AB,∠A=45°,CD=DA,
∴∠BCD=45°,∠CDA=90°,
∵DM⊥DN,
∴∠EDF=90°,
∴∠CDE=∠ADF,
在△DCE和△ADF中,
,
∴△DCE≌△ADF(ASA),
∴DE=DF;
(2)∵△DCE≌△ADF,
∴S△DCE=S△ADF,
∴四邊形DECF的面積=S△ACD
而AB=2,
∴CD=DA=1,
∴四邊形DECF的面積=S△ACD=CD•DA=
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了等腰直角三角形的性質(zhì)以及全等三角形的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,D為等腰Rt△ABC的斜邊AB的中點(diǎn),E為BC邊上一點(diǎn),連接ED并延長交CA的延長線于點(diǎn)F,過D作DH⊥EF交AC于G,交BC的延長線于H,則以下結(jié)論:①DE=DG;②BE=CG;③DF=DH;④BH=CF.其中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,D為等腰Rt△ABC的斜邊AB的中點(diǎn),E為BC邊上一點(diǎn),連接ED并延長交CA的延長線于點(diǎn)F,過D作DH⊥EF交AC于G,交BC的延長線于H,則以下結(jié)論:①DE=DG,②BE=CG,③DF=DH,④BH=CF.其中正確地是
①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)如圖,已知等腰Rt△ABC中,∠ACB=90°,點(diǎn)D為等腰Rt△ABC內(nèi)一點(diǎn),∠CAD=∠CBD=15°,E為AD延長線上的一點(diǎn),且CE=CA.
(1)求證:DE平分∠BDC;
(2)連接BE,設(shè)DC=a,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

D為等腰Rt△ABC斜邊AB的中點(diǎn),DM⊥DN,DM,DN分別交BC,CA于點(diǎn)E,F(xiàn).
(1)當(dāng)∠MDN繞點(diǎn)D轉(zhuǎn)動(dòng)時(shí),求證:DE=DF.
(2)若AB=2,求四邊形DECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省杭州市拱墅區(qū)中考模擬(二)數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,已知等腰Rt△ABC中,∠ACB=90°,點(diǎn)D為等腰Rt△ABC內(nèi)一點(diǎn),∠CAD=∠CBD=15°,E為AD延長線上的一點(diǎn),且CE=CA.
(1)求證:DE平分∠BDC;
(2)連結(jié)BE,設(shè)DC=a,求BE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案