相切兩圓的______,經(jīng)過(guò)切點(diǎn).

答案:
解析:

連心線(xiàn)


提示:

相切兩圓的公共點(diǎn)是切點(diǎn),在連心線(xiàn)上


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知圓心A(0,3),⊙A與x軸相切,⊙B的圓心在x軸的正半軸上,且⊙B與⊙A外切于點(diǎn)P,兩圓的公切線(xiàn)MP交y軸于點(diǎn)M,交x軸于點(diǎn)N.
(1)若sin∠OAB=
45
,求直線(xiàn)MP的解析式及經(jīng)過(guò)M、N、B三點(diǎn)的拋物線(xiàn)的解析式.
(2)若⊙A的位置大小不變,⊙B的圓心在x軸的正半軸上移動(dòng),并使⊙B與⊙A始終外切,過(guò)M作⊙B的切線(xiàn)MC,切點(diǎn)為C,在此變化過(guò)程中探究:
①四邊形OMCB是什么四邊形,對(duì)你的結(jié)論加以證明.
②經(jīng)過(guò)M、N、B三點(diǎn)的拋物線(xiàn)內(nèi)是否存在以BN為腰的等腰三角形?若存在,表示出來(lái);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2外切于點(diǎn)O,以直線(xiàn)O1O2為x軸,O為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系.在x軸上方的兩圓的外公切線(xiàn)AB與⊙O1相切于點(diǎn)A,與⊙O2相切于點(diǎn)B,直線(xiàn)AB交y軸于點(diǎn)c,若OA=3
3
,OB=3.
(1)求經(jīng)過(guò)O1、C、O2三點(diǎn)的拋物線(xiàn)的解析式;
(2)設(shè)直線(xiàn)y=kx+m與(1)中的拋物線(xiàn)交于M、N兩點(diǎn),若線(xiàn)段MN被y軸平分,求k的值;
(3)在(2)的條件下,點(diǎn)D在y軸負(fù)半軸上.當(dāng)點(diǎn)D的坐標(biāo)為何值時(shí),四邊形M精英家教網(wǎng)DNC是矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)沙)如圖半徑分別為m,n(0<m<n)的兩圓⊙O1和⊙O2相交于P,Q兩點(diǎn),且點(diǎn)P(4,1),兩圓同時(shí)與兩坐標(biāo)軸相切,⊙O1與x軸,y軸分別切于點(diǎn)M,點(diǎn)N,⊙O2與x軸,y軸分別切于點(diǎn)R,點(diǎn)H.
(1)求兩圓的圓心O1,O2所在直線(xiàn)的解析式;
(2)求兩圓的圓心O1,O2之間的距離d;
(3)令四邊形PO1QO2的面積為S1,四邊形RMO1O2的面積為S2
試探究:是否存在一條經(jīng)過(guò)P,Q兩點(diǎn)、開(kāi)口向下,且在x軸上截得的線(xiàn)段長(zhǎng)為
|s1-s2|
2
d
的拋物線(xiàn)?若存在,請(qǐng)求出此拋物線(xiàn)的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2003•山西)如圖,已知圓心A(0,3),⊙A與x軸相切,⊙B的圓心在x軸的正半軸上,且⊙B與⊙A外切于點(diǎn)P,兩圓的公切線(xiàn)MP交y軸于點(diǎn)M,交x軸于點(diǎn)N.
(1)若sin∠OAB=,求直線(xiàn)MP的解析式及經(jīng)過(guò)M、N、B三點(diǎn)的拋物線(xiàn)的解析式.
(2)若⊙A的位置大小不變,⊙B的圓心在x軸的正半軸上移動(dòng),并使⊙B與⊙A始終外切,過(guò)M作⊙B的切線(xiàn)MC,切點(diǎn)為C,在此變化過(guò)程中探究:
①四邊形OMCB是什么四邊形,對(duì)你的結(jié)論加以證明.
②經(jīng)過(guò)M、N、B三點(diǎn)的拋物線(xiàn)內(nèi)是否存在以BN為腰的等腰三角形?若存在,表示出來(lái);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1999年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•哈爾濱)已知:如圖,⊙O1與⊙O2外切于點(diǎn)O,以直線(xiàn)O1O2為x軸,O為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系.在x軸上方的兩圓的外公切線(xiàn)AB與⊙O1相切于點(diǎn)A,與⊙O2相切于點(diǎn)B,直線(xiàn)AB交y軸于點(diǎn)c,若OA=3,OB=3.
(1)求經(jīng)過(guò)O1、C、O2三點(diǎn)的拋物線(xiàn)的解析式;
(2)設(shè)直線(xiàn)y=kx+m與(1)中的拋物線(xiàn)交于M、N兩點(diǎn),若線(xiàn)段MN被y軸平分,求k的值;
(3)在(2)的條件下,點(diǎn)D在y軸負(fù)半軸上.當(dāng)點(diǎn)D的坐標(biāo)為何值時(shí),四邊形MDNC是矩形?

查看答案和解析>>

同步練習(xí)冊(cè)答案