【題目】課間,小明拿著老師的等腰直角三角尺玩,不小心掉到兩堆磚塊之間,如圖所示.

1)求證:ADC≌△CEB;

2)已知DE35cm,請(qǐng)你幫小明求出磚塊的厚度a的大。繅K磚的厚度相同).

【答案】1)見(jiàn)解析;(2)砌墻磚塊的厚度a5cm

【解析】

1)根據(jù)題意可得ACBC,∠ACB90°,ADDE,BEDE,進(jìn)而得到∠ADC=∠CEB90°,再根據(jù)等角的余角相等可得∠BCE=∠DAC,再證明△ADC≌△CEB即可.

2)利用(1)中全等三角形的性質(zhì)進(jìn)行解答.

1)證明:由題意得:ACBCACB90°,ADDE,BEDE

∴∠ADCCEB90°,

∴∠ACD+∠BCE90°,ACD+∠DAC90°

∴∠BCEDAC,

ADCCEB中,

,

∴△ADC≌△CEBAAS);

2)解:由題意得:一塊墻磚的厚度為a,

AD4a,BE3a,

由(1)得:ADC≌△CEB,

DCBE3a,ADCE4a,

DC+CEBE+AD7a35,

a5,

答:砌墻磚塊的厚度a5cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在等邊三角形中,邊上的動(dòng)點(diǎn),以為一邊,向上作等邊三角形,連接

1全等嗎?請(qǐng)說(shuō)明理由;

2)試說(shuō)明:;

3)如圖(2),將動(dòng)點(diǎn)運(yùn)動(dòng)到邊的延長(zhǎng)線上,所作三角形仍為等邊三角形,請(qǐng)問(wèn)是否仍有?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,邊的垂直平分線交的平分線于點(diǎn),連接,過(guò)點(diǎn)于點(diǎn).

1)若,求的度數(shù);

2)若,則_______;(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABCD,BAD,ADC 的平分線AE,DE相交于點(diǎn)E.

(1)證明:AEDE;

(2)如圖2,過(guò)點(diǎn)E作直線AB,AD,DC的垂線,垂足分別為F,G,H,證明:EF=EG=EH;

(3)如圖3,過(guò)點(diǎn)E的直線與AB,DC分別相交于點(diǎn)B,C(B、CAD的同側(cè))

①求證: E為線段BC的中點(diǎn);

②若SADE=8, SABE=2,求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,無(wú)人機(jī)在空中C處測(cè)得地面A、B兩點(diǎn)的俯角分別為60°、45°,如果無(wú)人機(jī)距地面高度CD米,點(diǎn)A、D、E在同一水平直線上,則A、B兩點(diǎn)間的距離是_____米.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:(要求保留作圖痕跡,不寫(xiě)作法)

1)作△ABCBC邊上的垂直平分線EF(交AC于點(diǎn)E,交BC于點(diǎn)F);

2)連結(jié)BE,若AC=10,AB=6,求△ABE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A(0,8)是直角坐標(biāo)系y軸上一點(diǎn),動(dòng)點(diǎn)P從原點(diǎn)O出發(fā),沿x軸正半軸運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,以P為直角頂點(diǎn)在第一象限內(nèi)作等腰Rt△APB.設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒.

(1)若AB∥x軸,求t的值;

(2)當(dāng)t=6時(shí),坐標(biāo)平面內(nèi)有一點(diǎn)M(不與A重合),使得以M、P、B為頂點(diǎn)的三角形和△ABP全等,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);

(3)在(2)的條件下,在x軸上是否存在點(diǎn)D,使O、A、B、D為頂點(diǎn)的四邊形面積是104?如果存在,請(qǐng)求出點(diǎn)D的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由;

(4)設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A,連接AB,在點(diǎn)P運(yùn)動(dòng)的過(guò)程中∠OA′B的度數(shù)是否會(huì)發(fā)生變化,若不變,請(qǐng)求出∠OA′B的度數(shù),若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地之間的鐵路交通設(shè)有特快列車和普通快車兩種車次,某天一輛普通快車從甲地出發(fā)勻速向乙地行駛,同時(shí)另一輛特快列車從乙地出發(fā)勻速向甲地行駛,兩車離甲地的路程S(千米)與行駛時(shí)間t(時(shí))之間的函數(shù)關(guān)系如圖所示.

(1)甲地到乙地的路成為________千米,普通快車到達(dá)乙地所用時(shí)間為_______小時(shí).

(2)求特快列車離甲地的路程s與t之間的函數(shù)關(guān)系式.

(3)在甲、乙兩地之間有一座鐵路橋,特快列車到鐵路橋后又行駛0.5小時(shí)與普通快車相遇,求甲地與鐵路橋之間的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AD平分∠BAC,點(diǎn)P為線段AD上的一個(gè)動(dòng)點(diǎn),PEADBC的延長(zhǎng)線于點(diǎn)E

1)若∠B=35°,∠ACB=85°,求∠E得度數(shù).

2)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),設(shè)∠B=α,∠ACB=ββα),求∠E得大小.(用含α、β的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案