精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平行四邊形ABCD中,AD=2ABCE平分∠BCD,延長CE、BA交于點F,連接AC、DF

1)如圖1,求證:四邊形ACDF是平行四邊形;

2)如圖2,連接BE,若CF=4,tanFBE=,求AE的長.

【答案】(1)詳見解析;(2)5.

【解析】

1)根據平行四邊形的性質和角平分線的性質可得BF=BC=AD ,然后可得AF=CD,因為ABCD,所以四邊形ACDF是平行四邊形;

2)根據平行四邊形的性質可求出EF,根據三角函數即可求出BE的長,易求BF的長,問題得解.

解:(1)證明:∵四邊形ABCD是平行四邊形,

AD=BC,AB=CDABCD,

∴∠DCF=BFC,

又∵CE平分∠BCD

∴∠BCF=FCD,

∴∠BFC=BCF

BF=BC=AD,

AD=2AB,

BF=2AB,

AB=AF=CD,

又∵ABCD,

∴四邊形ACDF是平行四邊形;

2)解: ∵四邊形ACDF是平行四邊形

EF=CE=,

又∵BF=BC

BECF

tanFBE=

BE=,

BF=10,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在如圖網格圖中,每個小正方形的邊長均為1個單位,在RtABC中,∠C90°,AC3,BC4

1)試在圖中作出△ABCA為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;

2)若點B的坐標為(﹣35),試在圖中畫出直角坐標系,并直接寫出A、C兩點的坐標;

3)根據(2)的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并直接寫出點A2B2、C2的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 如圖,在RtABC中,∠ACB=90°,AC=BC.點PAB邊上一點,QBC邊上一點,且∠BPQ=APC,過點AADPC,交BC于點D,直線AD分別交直線PC、PQE、F

1)求證:∠FDQ=FQD;

2)把DFQ沿DQ邊翻折,點F剛好落在AB邊上點G,設PC分別交GQ、GDM、N,試判定MNEN的數量關系,并給予證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在數學活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點在另一個三角尺的斜邊上移動,在這個運動過程中,有哪些變量,能研究它們之間的關系嗎?

小林選擇了其中一對變量,根據學習函數的經驗,對它們之間的關系進行了探究.

下面是小林的探究過程,請補充完整:

1)畫出幾何圖形,明確條件和探究對象;

如圖2,在RtABC中,∠C=90°AC=BC=6cm,D是線段AB上一動點,射線DEBC于點E,∠EDF=60°,射線DF與射線AC交于點F.設BE兩點間的距離為xcmE,F兩點間的距離為ycm

2)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

6.9

5.3

4.0

3.3

4.5

6

(說明:補全表格時相關數據保留一位小數)

3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;

4)結合畫出的函數圖象,解決問題:當DEF為等邊三角形時,BE的長度約為 cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校一課外活動小組為了了解學生最喜歡的球類運動況,隨機抽查了本校九年級的200名學生,調查的結果如圖所示,請根據該扇形統(tǒng)計圖解答以下問題:

(1)圖中的值是________

(2)被查的200名生中最喜歡球運動的學生有________人;

(3)若由3名最喜歡籃球運動的學生(記為),1名最喜歡乒乓球運動的學生(記為),1名最喜歡足球運動的學生(記為)組隊外出參加一次聯誼活動.欲從中選出2人擔任組長(不分正副),列出所有可能情況,并求2人均是最喜歡籃球運動的學生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】校體育組為了解全校學生“最喜歡的一項球類項目”,隨機抽取了部分學生進行調查,下面是根據調查結果繪制的不完整的統(tǒng)計圖:

請你根據統(tǒng)計圖回答下列問題:

(1)喜歡乒乓球的學生所占的百分比是多少?并請補全條形統(tǒng)計圖;

(2)請你估計全校500名學生中最喜歡“排球”項目的有多少名?

(3)在扇形統(tǒng)計圖中,“籃球”部分所對應的圓心角是多少度?

(4)籃球教練在制定訓練計劃前,將從最喜歡籃球項目的甲、乙、丙、丁四名同學中任選兩人進行個別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D.

(1)求證:AC平分∠DAB;

(2)若CD=4,AD=8,試求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在圓O中,弦AB8,點C在圓O(CA,B不重合),連接CACB,過點O分別作ODAC,OEBC,垂足分別是點D、E

(1)求線段DE的長;

(2)OAB的距離為3,求圓O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據市場調查發(fā)現,銷售單價每增加2元,每天銷售量會減少1件.設銷售單價增加元,每天售出件.

1)請寫出之間的函數表達式;

2)當為多少時,超市每天銷售這種玩具可獲利潤2250元?

3)設超市每天銷售這種玩具可獲利元,當為多少時最大,最大值是多少?

查看答案和解析>>

同步練習冊答案