如圖,設(shè)二次函數(shù)y=ax2+bx+c的圖象與x軸交于兩點(diǎn)A,B,與y軸交于點(diǎn)C,若AC=20,BC=15,∠ACB=90°,求這個(gè)二次函數(shù)的解析式.
思路點(diǎn)撥:解三角形得三邊長(zhǎng),分別求出△ABC三個(gè)頂點(diǎn)的坐標(biāo),然后列出關(guān)于a、b、c的方程組,并求解得結(jié)論. 評(píng)注:該題是把直角三角形的三個(gè)頂點(diǎn)放在拋物線上,通過(guò)幾何知識(shí),求出三個(gè)點(diǎn)的坐標(biāo).然后根據(jù)這三個(gè)點(diǎn)的坐標(biāo),求出二次函數(shù)的解析式.把幾何知識(shí)和代數(shù)知識(shí)有機(jī)而自然地結(jié)合起來(lái),但題目的難度卻不是很大. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2013年遼寧省鞍山市高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
如圖,已知一次函數(shù)y=0.5x+2的圖象與x軸交于點(diǎn)A,與二次函數(shù)y=ax2+bx+c的圖象交于y軸上的一點(diǎn)B,二次函數(shù)y=ax2+bx+c的圖象與x軸只有唯一的交點(diǎn)C,且OC=2.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)設(shè)一次函數(shù)y=0.5x+2的圖象與二次函數(shù)y=ax2+bx+c的圖象的另一交點(diǎn)為D,已知P為x軸上的一個(gè)動(dòng)點(diǎn),且△PBD為直角三角形,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省鹽城市中考數(shù)學(xué)真題試卷 題型:059
已知:函數(shù)y=ax2+x+1的圖象與x軸只有一個(gè)公共點(diǎn).
(1)求這個(gè)函數(shù)關(guān)系式;
(2)如圖所示,設(shè)二次函數(shù)y=ax2+x+1圖象的頂點(diǎn)為B,與y軸的交點(diǎn)為A,P為圖象上的一點(diǎn),若以線段PB為直徑的圓與直線AB相切于點(diǎn)B,求P點(diǎn)的坐標(biāo);
(3)在(2)中,若圓與x軸另一交點(diǎn)關(guān)于直線PB的對(duì)稱點(diǎn)為M,試探索點(diǎn)M是否在拋物線y=ax2+x+1上,若在拋物線上,求出M點(diǎn)的坐標(biāo);若不在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知二次函數(shù)y=-x2+bx+c的圖象經(jīng)過(guò)A(2,0),B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知一次函數(shù)y=0.5x+2的圖象與x軸交于點(diǎn)A,與二次函數(shù)y=ax2+bx+c的圖象交于y軸上的一點(diǎn)B,二次函數(shù)y=ax2+bx+c的圖象與x軸只有唯一的交點(diǎn)C,且OC=2.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)設(shè)一次函數(shù)y=0.5x+2的圖象與二次函數(shù)y=ax2+bx+c的圖象的另一交點(diǎn)為D,已知P為x軸上的一個(gè)動(dòng)點(diǎn),且△PBD為直角三角形,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com