【題目】如圖,在正方形ABCD中,邊長為2的等邊△AEF的頂點E、F分別在BC和CD上,下列結(jié)論:
①CE=CF;②∠AEB=75°;③BE+DF=EF;④S△EFC=1
其中正確的序號是 .
【答案】①②④.
【解析】
試題分析:根據(jù)三角形的全等的知識可以判斷①的正誤;根據(jù)角角之間的數(shù)量關(guān)系,以及三角形內(nèi)角和為180°判斷②的正誤;根據(jù)線段垂直平分線的知識可以判斷③的正誤,根據(jù)等邊三角形的邊長求得直角三角形的邊長,從而求得面積可以判斷④的正誤.
解:∵四邊形ABCD是正方形,
∴AB=AD,
∵△AEF是等邊三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=DC,
∴BC﹣BE=CD﹣DF,
∴CE=CF,
∴①說法正確;
∵CE=CF,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,
∴②說法正確;
如圖,連接AC,交EF于G點,
∴AC⊥EF,且AC平分EF,
∵∠CAF≠∠DAF,
∴DF≠FG,
∴BE+DF≠EF,
∴③說法錯誤;
∵EF=2,
∴CE=CF=,
∴S△EFC=FCEC=××=1
④說法正確,
∴正確的有①②④.
故答案為:①②④.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,拋物線y=x2向左平移1個單位,再向下平移4個單位,得到拋物線y=(x﹣h)2+k,所得拋物線與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.
(1)求h、k的值;
(2)判斷△ACD的形狀,并說明理由;
(3)在線段AC上是否存在點M,使△AOM與△ABC相似?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知三角形的兩邊長分別為2cm和7cm,則下列長度的四條線段中能作為第三邊的是( )
A. 3cm B. 5cm C. 8cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為.
A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有四包洗衣粉,每包以標準克數(shù)(500克)為基準,超過的克數(shù)記作正數(shù),不足的克數(shù)記作負數(shù),以下數(shù)據(jù)是記錄結(jié)果,其中表示實際克數(shù)最接近標準克數(shù)的是( 。
A. +6 B. -7 C. -14 D. +18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是二次函數(shù)y=ax2+bx+c的自變量x和因變量y的對應值表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | … |
若點A(x1,y1)、B(x2,y2)都在這個二次函數(shù)的圖象上,且3<x1<x2,則y1、y2的大小關(guān)系是y1_____y2,.(填寫“<”,“>”或“=”)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com