【題目】如圖,在平行四邊形ABCD中,點E.F分別在AB、CD上,AE=CF,連接AF,BF,DE,CE,分別交于H、G.
求證:(1)四邊形AECF是平行四邊形。(2)EF與GH互相平分。
【答案】見解析
【解析】
(1)根據四邊形ABCD是平行四邊形,由平行四邊形的性質可得:,,
根據,利用平行四邊形的判定定理可得:四邊形AECF是平行四邊形,
由得四邊形AECF是平行四邊形,根據平行四邊形的性質可得:,
根據,,,可得:,,根據平行四邊形的判定定理可得:四邊形BFDE是平行四邊形,再根據平行四邊形的性質可得:,根據平行四邊形的判定定理可得:四邊形EGFH是平行四邊形,由平行四邊形的性質可得:
與GH互相平分.
四邊形ABCD是平行四邊形,
,,
,
四邊形AECF是平行四邊形,
由得:四邊形AECF是平行四邊形,
,
,,,
,,
四邊形BFDE是平行四邊形,
,
四邊形EGFH是平行四邊形,
與GH互相平分.
科目:初中數學 來源: 題型:
【題目】為積極響應政府提出的“綠色發(fā)展·低碳出行”號召,某社區(qū)決定購置一批共享單車.經市場調查得知,購買6輛男式單車與8輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16 000元.
(1)求男式單車和女式單車的單價;
(2)該社區(qū)要求男式單車比女式單車多5輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50 000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,MN是⊙O的切線,B為切點,BC是⊙O的弦且∠CBN=45°,過C的直線與⊙O,MN分別交于A,D兩點,過C作CE⊥BD于點E.、
(1)求證:CE是⊙O的切線;
(2)若∠D=30°,BD=4,求⊙O的半徑r.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在乘法公式的學習中,我們采用了構造幾何圖形的方法研究問題,借助直觀、形象的幾何模型,加深對乘法公式的認識和理解,從中感悟數形結合的思想方法,感悟幾何與代數內在的統(tǒng)一性,根據課堂學習的經驗,解決下列問題:
(1)如圖①邊長為(x+3)的正方形紙片,剪去一個邊長為x的正方形之后,剩余部分可拼剪成一個長方形(不重疊無縫隙),則這個長方形的面積為 (用含x的式子表示).
(2)如果你有5張邊長為a的正方形紙,4張長、寬分別為a、b(a>b)的長方形紙片,3張邊長為b正方形紙片.現(xiàn)從其中取出若干張紙片,每種紙片至少取一張,把取出的這些紙片拼成一個正方形(不重疊無縫隙),則拼成的正方形的邊長最長可以為
A.a+b;B.a+2b;C.a+3b;D.2a+b.
(3)1個大正方形和4個大小完全相同的小正方形按圖②③兩種方式擺放,求圖③中,大正方形中未被4個小正方形覆蓋部分的面積.(用含m、n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,已知點A(-5,0),B(5,0),D(2,7).
(1)若點C為AD與y軸的交點,求C點的坐標;【提示:設C點的坐標為(0,x)】
(2)動點P從B點出發(fā)以每秒1個單位的速度沿BA方向運動,同時動點Q從C點出發(fā),也以每秒1個單位的速度沿y軸正半軸方向運動.(當P點運動到A點時,兩點都停止運動,如圖②所示).設從出發(fā)起運動了x秒.
①請用含x的代數式分別表示P、Q兩點的坐標;
②當x=2時,y軸上是否存在一點E,使得△AQE的面積與△APQ的面積相等?若存在,求E點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在2016年龍巖市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數分別為:158,160,154,158,170,則由這組數據得到的結論錯誤的是( )
A.平均數為160
B.中位數為158
C.眾數為158
D.方差為20.3
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com