【題目】如圖1,對稱軸為直線x=的拋物線經(jīng)過B(2,0)、C(0,4)兩點,拋物線與x軸的另一交點為A

(1)求拋物線的解析式;

(2)若點P為第一象限內(nèi)拋物線上的一點,設四邊形COBP的面積為S,求S的最大值;

(3)如圖2,若M是線段BC上一動點,在x軸是否存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.

【答案】(1);(2)6;(3)Q(,0).

【解析】(1)由對稱性得:A(﹣1,0),設拋物線的解析式為:y=a(x+1)(x﹣2),把C(0,4)代入:4=﹣2a,a=﹣2,y=﹣2(x+1)(x﹣2),拋物線的解析式為:;

(2)如圖1,設點P(m,),過P作PD⊥x軸,垂足為D,S=S梯形+S△PDB=S==,﹣2<0,S有最大值,則S=6;

(3)如圖2,存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形,理由是:

設直線BC的解析式為:y=kx+b,把B(2,0)、C(0,4)代入得:,解得:,直線BC的解析式為:y=﹣2x+4,設M(a,﹣2a+4),過A作AE⊥BC,垂足為E,則AE的解析式為:,則直線BC與直線AE的交點E(1.4,1.2),設Q(﹣x,0)(x>0),AE∥QM,△ABE∽△QBM,①,由勾股定理得:②,由①②得:=4(舍),=,當a=時,x=Q(,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。

(1)如圖(1)點P是正方形ABCD的邊CD上一點(點P與點C,D不重合),點E在BC的延長線上,且CE=CP,連接BP,DE.求證:BP=DE且BP⊥DE;
(2)直線EP交AD于F,連接BF,F(xiàn)C.點G是FC與BP的交點.
①若BC=2CE時,求證:BP⊥CF;
②若BC=nCE(n是大于1的實數(shù))時,記△BPF的面積為S1 , △DPE的面積為S2
求證:S1=(n+1)S2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x1為方程x2m0的一個根,則m的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正多邊形的一個內(nèi)角為135°,則該多邊形的邊數(shù)為(
A.9
B.8
C.7
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A,B兩點,與y軸交于點C,點B的坐標為(3,0)

(1)求m的值及拋物線的頂點坐標.

(2)點P是拋物線對稱軸l上的一個動點,當PA+PC的值最小時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點A、B的坐標分別為(1,4)和(3,0),點C是y軸上的一個動點,且A、B、C三點不在同一條直線上,當△ABC的周長最小時,點C的坐標是(
A.(0,0)
B.(0,1)
C.(0,2)
D.(0,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC=60°,D是三角形外一點,且BD=CD,AD與BC交于一點E,∠BDC=120°,則下列結(jié)論錯誤的是(
A.AD垂直平分BC
B.AB=2BD
C.∠ACD=90°
D.△ABD≌△ACD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應市教育局倡導的“陽光體育運動”的號召,全校學生積極參與體育運動.為了進一步了解學校九年級學生的身體素質(zhì)情況,體育老師在九年級800名學生中隨機抽取50位學生進行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖,如下所示:

組別

次數(shù)x

頻數(shù)(人數(shù))

第1組

80≤x<100

6

第2組

100≤x<120

8

第3組

120≤x<140

a

第4組

140≤x<160

18

第5組

160≤x<180

6


請結(jié)合圖表完成下列問題:
(1)表中的a=;
(2)請把頻數(shù)分布直方圖補充完整;
(3)這個樣本數(shù)據(jù)的中位數(shù)落在第組;
(4)若九年級學生一分鐘跳繩次數(shù)(x)達標要求是:x<120為不合格;120≤x<140為合格;140≤x<160為良;x≥160為優(yōu).根據(jù)以上信息,請你估算學校九年級同學一分鐘跳繩次數(shù)為優(yōu)的人數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當方法解方程:(1)x2﹣4=3x;(2)(2x+3)2=9(x﹣1)2

查看答案和解析>>

同步練習冊答案