【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A(0,8),C(6,0).動點(diǎn)P從點(diǎn)B出發(fā),以每秒1個單位長的速度沿射線BC方向勻速運(yùn)動,設(shè)運(yùn)動時間為t秒.

(1)當(dāng)t=   s時,以O(shè)B、OP為鄰邊的平行四邊形是菱形;

(2)當(dāng)點(diǎn)P在OB的垂直平分線上時,求t的值;

(3)將△OBP沿直線OP翻折,使點(diǎn)B的對應(yīng)點(diǎn)D恰好落在x軸上,求t的值.

【答案】(1)16;(2)t=;(3)滿足條件的t的值為5s或20s.

【解析】試題分析:(1)先有菱形的性質(zhì)得出PC=BC=8,進(jìn)而得出BP=16即可得出結(jié)論;

(2)由線段的垂直平分線的性質(zhì)得出PO=PB=t,再利用勾股定理即可求出結(jié)論;

(3)分點(diǎn)P在x軸坐標(biāo)軸和負(fù)半軸上,利用勾股定理即可建立方程求解.

試題解析:(1)如圖1,

∵A(0,8),∴OA=8,C(6,0),∴OC=6,

∵四邊形OABC是矩形,∴BC=OA=8,

∵以O(shè)B、OP為鄰邊的平行四邊形是菱形,∴CP=BC=OA=8,

∴BP=BC+CP=16,t=16÷1=16s,

故答案為16;

(2)如圖2,∵點(diǎn)P是OB的垂直平分線上,∴PO=PB=t,∴PC=BC﹣PB=8﹣t,

在Rt△POC中,OC=6,根據(jù)勾股定理得,OC2+PC2=OP2,∴62+(8﹣t)2=t2,

∴t=;

(3)當(dāng)點(diǎn)P在x軸的坐標(biāo)軸上時,如圖3,

由折疊知,△OBP≌△ODP,∴PD=PB=t,OD=OB==10,∴CD=OD﹣OC=4,

在Rt△PCD中,CD=4,PC=BC﹣PB=8﹣t,PD=t,

根據(jù)勾股定理得,PC2+CD2=PD2,∴42+(8﹣t)2=t2,∴t=5,

當(dāng)點(diǎn)P在x軸負(fù)半軸上時,如圖4,

由折疊知,PB=PD=t,OD=OB=10,∴CD=OD+OC=16,PC=t﹣8,

在Rt△PCD中,根據(jù)勾股定理得,PC2+CD2=PD2,∴(t﹣8)2+162=t2,∴t=20,

即:滿足條件的t的值為5s或20s.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩塊大小一樣斜邊為4且含有30°角的三角板如圖水平放置.將△CDE繞C點(diǎn)按逆時針方向旋轉(zhuǎn),當(dāng)E點(diǎn)恰好落在AB上時,△CDE旋轉(zhuǎn)了度,線段CE旋轉(zhuǎn)過程中掃過的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了減少霧霾,美化環(huán)境,小王上班的交通方式由駕車改為騎自行車,小王家距單位的路程是15千米,在相同的路線上,小王駕車的速度是騎自行車速度的4倍,小王每天騎自行車上班比駕車上班要早出發(fā)45分鐘,才能按原時間到達(dá)單位,求小王騎自行車的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A=30°,C=90°,E是斜邊AB的中點(diǎn),點(diǎn)PAC邊上一動點(diǎn),若RtABC的直角邊AC=4,則PB+PE的最小值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y軸上有一點(diǎn)P(0,2),作點(diǎn)P關(guān)于點(diǎn)A的對稱點(diǎn)P1,作點(diǎn)P1關(guān)于點(diǎn)B的對稱點(diǎn)P2,作點(diǎn)P2關(guān)于點(diǎn)C的對稱點(diǎn)P3,作點(diǎn)P3關(guān)于點(diǎn)D的對稱點(diǎn)P4,作點(diǎn)P4關(guān)于點(diǎn)A的對稱點(diǎn)P5,作點(diǎn)P5關(guān)于點(diǎn)B的對稱點(diǎn)P6,…,按此規(guī)律操作下去,則點(diǎn)P2017的坐標(biāo)為( 。

A. (2,0) B. (0,2) C. (0,﹣2) D. (﹣2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在長方形ABCD內(nèi),將兩張邊長分別為ab(ab)的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2.當(dāng)AD﹣AB=2時,S2﹣S1的值為_______(用a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請仔細(xì)閱讀下面材料,然后解決問題:

在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”.例如: ;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”,例如: , .我們知道,假分?jǐn)?shù)可以化為帶分?jǐn)?shù),例如: ,類似的,假分式也可以化為“帶分式”(整式與真分式和的形式),例如:

(1)將分式化為帶分式;

(2)當(dāng)x取哪些整數(shù)值時,分式的值也是整數(shù)?

(3)當(dāng)x的值變化時,分式的最大值為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=x+b,它的圖象與兩坐標(biāo)軸所圍成的圖形的面積等于2.

(1)求b的值;

(2)若函數(shù)y=x+b的圖象交y軸于正半軸,則當(dāng)x取何值時,y的值是正數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.

(1)求證:DEF是等腰三角形;

(2)當(dāng)∠A=40°時,求∠DEF的度數(shù);

查看答案和解析>>

同步練習(xí)冊答案