A、B兩地如圖,,,,AB=8,以為邊長的正方形DEFG的一邊GD在直線AB上,且點D與點A重合,F(xiàn)將正方形DEFG沿A→B的方向以每秒1個單位的速度勻速運(yùn)動,當(dāng)點D與點B重合時停止,則在這個運(yùn)動過程中,正方形DEFG與⊿ABC的重合部分的面積與運(yùn)動時間之間的函數(shù)關(guān)系圖像大致是( )
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC的面積等于6,邊AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,點P在直線AD上,則線段BP的長不可能是( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
拋物線y=x2﹣x+2與x軸交于A,B兩點(OA<OB),與y軸交于點C.
(1)求點A,B,C的坐標(biāo);
(2)點P從點O出發(fā),以每秒2個單位長度的速度向點B運(yùn)動,同時點E也從點O出發(fā),以每秒1個單位長度的速度向點C運(yùn)動,設(shè)點P的運(yùn)動時間為t秒(0<t<2).
①過點E作x軸的平行線,與BC相交于點D(如圖所示),當(dāng)t為何值時,+的值最小,求出這個最小值并寫出此時點E,P的坐標(biāo);
②在滿足①的條件下,拋物線的對稱軸上是否存在點F,使△EFP為直角三角形?若存在,請直接寫出點F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線與坐標(biāo)軸交于AB兩點,點是軸上一動點,一點M為圓心,2個單位長度為半徑作⊙M,當(dāng)⊙M與直線想切時,的值為__________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【問題提出】
如圖,已知⊿ABC是等邊三角形,點E在線段AB上,點D在直線BC上,且DE=EC,將⊿BCE繞點C順時針旋轉(zhuǎn)至⊿ACF,連接EF。
試證明:AB=DB+AF。
【類比探究】
(1)如圖,如果點E在線段AB的延長線上,其它條件不變,線段AB、DB、AF之間又有怎樣的數(shù)量關(guān)系?請說明理由。
(2)如果點E在線段BA的延長線上,其他條件不變,請在圖的基礎(chǔ)上將圖形補(bǔ)充完整,并寫出AB,DB,AF之間數(shù)量關(guān)系,不必說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,坐標(biāo)原點O為矩形ABCD的對稱中心,頂點A的坐標(biāo)為(1,t),AB∥x軸,矩形A′B′C′D′與矩形ABCD是位似圖形,點O為位似中心,點A′,B′分別是點A,B的對應(yīng)點,=k.已知關(guān)于x,y的二元一次方程(m,n是實數(shù))無解,在以m,n為坐標(biāo)(記為(m,n)的所有的點中,若有且只有一個點落在矩形A′B′C′D′的邊上,則k•t的值等于( )
A. B. 1 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有四張分別畫有線段、等邊三角形、平行四邊形和正方形的四個圖形的卡片,它們的背面都相同,現(xiàn)將它們背面朝上,從中翻開任意一張的圖形是中心對稱圖形,但不是軸對稱圖形的概率是( )
A. B. C. D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com