某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似地看作一次函數(shù)(如圖).

(1)求y與x之間的函數(shù)表達(dá)式;

(2)設(shè)公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之間的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大?最大值是多少?

答案:
解析:

  分析:(1)根據(jù)函數(shù)圖象獲得信息,求出一次函數(shù)表達(dá)式;(2)與母題一樣,首先確定總利潤P的函數(shù)表達(dá)式,然后再求最大值.不同之處是本題頂點(diǎn)橫坐標(biāo)不在自變量的取值范圍內(nèi)時(shí),需根據(jù)二次函數(shù)的增減性求最大值.

  解:(1)設(shè)y與x之間的函數(shù)表達(dá)式為y=kx+b.

  因?yàn)閥=kx+b經(jīng)過點(diǎn)(60,400)、(70,300),

  所以解得

  所以y與x之間的函數(shù)表達(dá)式為y=-10x+1000.

  (2)P=(-10x+1000)(x-50)

 。剑10x2+1500x-50000,

  自變量x的取值范圍是50≤x≤70.

  因?yàn)椋?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/30ZB/BSD9/0057/f14899536a227385dd7f8dca3eb0e990/C/Image136.gif" width=24 height=41>=-=75,a<0,

  所以函數(shù)P=-10x2+1500x-50000的圖象開口向下,對稱軸為x=75.

  因?yàn)?0≤x≤70,此時(shí)y隨x的增大而增大,

  所以當(dāng)x=70時(shí),P最大,最大利潤為6000元.

  點(diǎn)評:在實(shí)際問題中,最值不一定是二次函數(shù)的頂點(diǎn)縱坐標(biāo),需要根據(jù)自變量的取值范圍確定.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之精英家教網(wǎng)間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2010年4月10日我市某服裝公司試銷一種成本為50元每件的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),每件的利潤率不得高于40%,銷售中發(fā)現(xiàn)售價(jià)為60元時(shí)每天能售出400件,單價(jià)每提高1元就少銷售10件.設(shè)銷售量為 y銷售單價(jià)為 x.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)時(shí)值青海玉樹地震,為發(fā)揚(yáng)中華民族“一方有難,八方支援”的偉大民族精神,公司決定捐出一日最大利潤,請問該種T恤應(yīng)該如何定價(jià)才能使公司捐出達(dá)到最多,最多能捐出多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第26章《二次函數(shù)》中考題集(22):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》?碱}集(19):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(22):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案