如圖,在矩形ABCD中,點O是AC的中點,AC=2AB,延長AB到點G,使BG=AB,連結(jié)GO交BC于點E,延長GO交AD于點F.
(1)求證:四邊形AECF是菱形;
(2)連結(jié)CG,若AE=3cm,延長AE交線段CG于點M,求AM的長.

(1)證明:∵四邊形ABCD為矩形,
∴AD∥BC,
∴∠FAO=∠ECO,
又∵BG=AB,AC=2AB,O為AC中點,
∴AO=CO=AB,AC=AG,
在△AOG和△ABC中,
∴△AOG≌△ABC(SAS),
∴∠ABC=∠AOG=90°,
在△AOF和△COE中,,
∴△AOF≌△COE(ASA),
∴AF=CE,
∴四邊形AECF為平行四邊形,
又∵AC⊥EF,
∴四邊形AECF為菱形;

(2)在Rt△ABC中,由AB=AC可推出∠ACB=30°,
由菱形可得EA=EC,
∴∠EAO=30°,
∵AE=3cm,
∴OE=AE=cm,AO===cm,
AC=2AO=3cm,
延長AE交CG于點M,∵AC=AG且∠CAE=∠GAE=30°,
∴AM⊥CG,
∴CM=AC=cm,
∴AM===cm.
分析:(1)根據(jù)中點定義可得AC=2AO,然后求出AO=AB,AC=AG,再利用“邊角邊”證明△AOG和△ABC全等,根據(jù)全等三角形對應角相等可得∠ABC=∠AOG=90°,再利用“角邊角”證明△AOF和△COE全等,根據(jù)全等三角形對應邊相等可得AF=CE,然后求出四邊形AECF為平行四邊形,最后根據(jù)對角線互相垂直的平行四邊形是菱形證明;
(2)先求出∠ACB=30°,再根據(jù)菱形的性質(zhì)EA=EC,然后根據(jù)等邊對等角求出∠EAO=30°,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出OE,再利用勾股定理列式計算求出AO,從而得到AC的長度,然后求出∠CAE=∠GAE=30°,根據(jù)等腰三角形三線合一的性質(zhì)以及直角三角形30°角所對的直角邊等于斜邊的一半求出CM,再利用勾股定理列式計算即可求出AM.
點評:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),菱形的判定與性質(zhì),熟記各圖形的性質(zhì)與判定方法找出三角形全等的條件是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設(shè)經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習冊答案