兩個(gè)全等的含30°, 60°角的三角板ADE和三角板ABC如圖所示放置,E,A,C三點(diǎn)在一條直線上,連結(jié)BD,取BD的中點(diǎn)M,連結(jié)ME,MC.試判斷△EMC的形狀,并說(shuō)明理由.

答案:

image.png

△EMC是等腰直角三角形.理由如下:
連接MA.
∵∠EAD=30°,∠BAC=60°,
∴∠DAB=90°,
∵△EDA≌△CAB,
∴DA=AB,ED=AC,
∴△DAB是等腰直角三角形.
又∵M(jìn)為BD的中點(diǎn),
∴∠MDA=∠MBA=45°,AM⊥BD(三線合一),
AM=

1
2
BD=MD,(直角三角形斜邊上的中線等于斜邊的一半)
∴∠EDM=∠MAC=105°,
在△MDE和△CAM中,
ED=AC,∠MDE=∠CAM,MD=AM
∴△MDE≌△MAC.
∴∠DME=∠AMC,ME=MC,
又∵∠DMA=90°,
∴∠EMC=∠EMA+∠AMC=∠EMA+∠DME=∠DMA=90°.
∴△MEC是等腰直角三角形.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建南安樂(lè)峰中學(xué)九年級(jí)上學(xué)期期末跟蹤測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,污水處理公司為某樓房建一座周長(zhǎng)為30米的三級(jí)污水處理池,平面圖為矩形,米,中間兩條隔墻分別為、,池墻的厚度不考慮.

(1)用含的代數(shù)式表示外圍墻的長(zhǎng)度;

(2)如果設(shè)計(jì)時(shí)要求矩形水池恰好被隔墻分成三個(gè)全等的矩形,且它們均與矩形相似,求此時(shí)的長(zhǎng)

(3)如果設(shè)計(jì)時(shí)要求矩形水池恰好被隔墻分成三個(gè)全等的正方形.已知池的外圍墻建造單價(jià)為每米400元,中間兩條隔墻建造單價(jià)每米300元,池底建造的單價(jià)為每平方米100.試計(jì)算此項(xiàng)工程的總造價(jià).(結(jié)果精確到1元)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

兩個(gè)全等的含300,600角的三角板ADE和三角板ABC如圖所示放置,E,A,C三點(diǎn)在一條直線上,連結(jié)BD,取BD的中點(diǎn)M,連結(jié)ME,MC,試判斷△EMC的形狀,并說(shuō)明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

兩個(gè)全等的含300, 600角的三角板ADE和三角板ABC如圖所示放置,E,AC三點(diǎn)在一條直線上,連結(jié)BD,取BD的中點(diǎn)M,連結(jié)ME,MC。試判斷△EMC的形狀,并說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案