如圖1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=CD=4,BC=3.點(diǎn)M從點(diǎn)D出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng).同時(shí),點(diǎn)N從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)N作NP⊥AD于點(diǎn)P.連接AC交NP于點(diǎn)Q,連接MQ.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)填空:AM=
4-2t
4-2t
;AP=
1+t
1+t
.(用含t的代數(shù)式表示)
(2)t取何值時(shí),梯形ABNM面積等于梯形ABCD面積的
;
(3)如圖2,將△AQM沿AD翻折,得△AKM,請(qǐng)問(wèn)是否存在某時(shí)刻t,使四邊形AQMK為正方形?說(shuō)明理由.