【題目】問題情境:

在綜合與實踐課上,老師讓同學們以“矩形紙片的剪拼”為主題開展數(shù)學活動.如 1,將:矩形紙片 ABCD 沿對角線 AC 剪開,得到△ABC 和△ACD.并且量得 AB 4cmAC8cm

操作發(fā)現(xiàn):

1)將圖 1 中的△ACD 以點 A 為旋轉中心,按逆時針方向旋轉∠α,使∠α=∠BAC,得到如圖 2 所示的△ACD,過點 C AC′的平行線,與 DC'的延長線 交于點 E,則四邊形 ACEC′的形狀是

2)創(chuàng)新小組將圖 1 中的△ACD 以點 A 為旋轉中心,按逆時針方向旋轉,使 B、 A、D 三點在同一條直線上,得到如圖 3 所示的△ACD,連接 CC',取 CC′的中 F,連接 AF 并延長至點 G,使 FGAF,連接 CGCG,得到四邊形 ACGC′, 發(fā)現(xiàn)它是正方形,請你證明這個結論.

實踐探究:

3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結論的基礎上,進行如下操作:將△ABC 沿著 BD 方向平移,使點 B 與點 A 重合,此時 A 點平移至 A'點,A'C BC′相交于點 H, 如圖 4 所示,連接 CC′,試求 tanCCH 的值.

【答案】1)菱形;(2)見解析;(3tan∠C′CH

【解析】

1)根據(jù)可以得到,再結合可以得到,而已知可以得到四邊形為平行四邊形,由于旋轉,所以,從而得到四邊形為菱形;

(2)根據(jù)可以得到四邊形為平行四邊形,而,所以四邊形為菱形,那么只需要再證明一個直角即可,當、三點共線時:,而根據(jù)旋轉的性質(zhì),,可以得到:

,從而證到四邊形為正方形;

3)結合第二問可以得到,所以要求,就可以分別求出得長度,由題意可以得到,那么,結合三角函數(shù)分別就可以分別求出;

1)菱形,理由如下:

由旋轉的性質(zhì)可得:

,即

四邊形為平行四邊形

由旋轉的性質(zhì)可得:

四邊形為菱形;

2)正方形,理由如下:

四邊形為平行四邊形

四邊形為菱形

、、三點共線時:

由旋轉的性質(zhì)得:

四邊形為正方形;

3)在中,AB4,AC8,

由(2)結合平移知,

中,

中,;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點P為拋物線yx2上一動點,以P為頂點,且經(jīng)過原點O的拋物線,記作“yp”,設其與x軸另一交點為A,點P的橫坐標為m

1當△OPA為直角三角形時,m=    

當△OPA為等邊三角形時,求此時“yp”的解析式;

2)若P點的橫坐標分別為1,2,3,…n(n為正整數(shù))時,拋物線“yp”分別記作“”、“”…,“”,設其與x軸另外一交點分別為A1,A2,A3,…An,過P1P2,P3,…Pnx軸的垂線,垂足分別為H1,H2,H3,…Hn

 1) Pn的坐標為    ;OAn=    ;(用含n的代數(shù)式來表示)

PnHnOAn=16時,求n的值.

 2)是否存在這樣的An,使得∠OP4An=90°,若存在,求n的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新冠肺炎疫情在全球蔓延,造成了嚴重的人員傷亡和經(jīng)濟損失,其中一個原因是新冠肺炎病毒傳播速度非?欤粋人如果感染某種病毒,經(jīng)過了兩輪的傳播后被感染的總人數(shù)將達到64人.

1)求這種病毒每輪傳播中一個人平均感染多少人?

2)按照上面的傳播速度,如果傳播得不到控制,經(jīng)過三輪傳播后一共有多少人被感染?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,BEAC于點E,ADBC于點D,∠BAD=45°,CD=,ADBE交于點F,連接CF,則AD的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB是直角三角形,∠AOB90°,OB2OA,點A在反比例函數(shù)y的圖象上.若點B在反比例函數(shù)y的圖象上,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一座現(xiàn)代化大型單塔雙面扇形斜拉橋,主橋采用獨塔雙面索斜拉設計,主橋樁呈“H”形,兩側用鋼絲繩斜拉固定.

問題提出:

如何測量主橋樁頂端至橋面的距離AD

方案設計:

如圖,某數(shù)學課題研究小組通過調(diào)查研究和實地測量,在橋面B處測得∠ABC=26.57°,再沿BD方向走21米至C處,在C處測得∠ACD=30.96°.

問題解決:

根據(jù)上述方案和數(shù)據(jù),求銀灘黃河大橋主橋樁頂端至橋面的距離AD

(結果精確到1m,參考數(shù)據(jù):sin26.57°≈0.447,cos26.57°≈0.894,tan26.57°≈0.500,sin30.96°≈0.514cos30.96°≈0.858,tan30.96°≈0.600)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系中的位置如圖,其中每個小正方形的邊長為1個單位長度.

(1)畫出△ABC關于原點O的中心對稱圖形△A1B1C1;

(2)畫出將△ABC繞點C順時針旋轉90°得到△A2B2C2

(3)(2)的條件下,求點A旋轉到點A2所經(jīng)過的路線長(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】P是等邊ABC內(nèi)部一點,∠APB、BPC、CPA的大小之比是5:6:7,將ABP逆時針旋轉,使得ABAC重合,則以PA、PB、PC的長為邊的三角形的三個角∠PCQ:QPC:PQC=________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2ax+a1x軸交于A,B兩點(點B在正半軸上),與y軸交于點C,OA3OB.點PCA的延長線上,點Q在第二象限拋物線上,SPBQSABQ

1)求拋物線的解析式.

2)求直線BQ的解析式.

3)若∠PAQ=∠APB,求點P的坐標.

查看答案和解析>>

同步練習冊答案