在等腰△ABC中,CD是底邊AB上的高,E是腰BC的中點,AE與CD交于F,現(xiàn)給出三條路線:
(a)A→F→C→E→B→D→A;
(b)A→C→E→B→D→F→A;
(c)A→D→B→E→F→C→A;
它們的長度分別記為L(a)、L(b)及L(c),則L(a)<L(b),L(a)<L(c),L(b)<L(c)中一定能成立的是   
【答案】分析:根據(jù)題意可以得到F是△ABC的重心.從而得到CF=2DF,AF=2EF,AF=BF,利用L(a)=AF+FC+CB+BA、L(c)=AB+BE+EF+FC+CA得到L(c)-L(a)=(AB-BD)+(EF-FA)+(FC-DF)-CE=AD+DF-CE-EF,所以當(dāng)△ABC為等邊三角形時,AD=CE,DF=EF,此時有L(a)-L(b)=FC+DA-AC-DF=DF+DA-AC由于當(dāng)∠ACB較大時,AC與AD可以很接近,取CD足夠長可使L(a)>L(b),結(jié)論得出.
解答:解:依題意,知F是△ABC的重心.

∴CF=2DF,AF=2EF,AF=BF,
∵L(a)=AF+FC+CB+BA
L(c)=AB+BE+EF+FC+CA
∴L(c)-L(a)=(AB-BD)+(EF-FA)+(FC-DF)-CE=AD+DF-CE-EF
當(dāng)△ABC為等邊三角形時,AD=CE,DF=EF,此時有L(a)-L(b)=FC+DA-AC-DF=DF+DA-AC由于當(dāng)∠ACB較大時,AC與AD可以很接近,取CD足夠長可使L(a)>L(b),如取∠ACB=120°,AC=BC=1,則AD=
∴L(a)-L(b)=故L(a)<L(b)不恒成立.
故答案為L(a)<L(b).
點評:本題考查了幾何不等式及三角形的重心的知識,在中學(xué)階段重心涉及較少,因此本題屬于一道難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖所示,在等腰△ABC中,點D是BC的中點,DE⊥AB,DF⊥AC,垂足分別為E、F,圖中有幾對全等三角形( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)如圖,在等腰△ABC中,底邊BC的中點是點D,底角的正切值是
1
3
,將該等腰三角形繞其腰AC上的中點M旋轉(zhuǎn),使旋轉(zhuǎn)后的點D與A重合,得到△A′B′C′,如果旋轉(zhuǎn)后的底邊B′C′與BC交于點N,那么∠ANB的正切值等于
3
4
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在等腰△ABC中,AB=AC,∠A=80°,則一腰上的高CD與底邊BC的夾角為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點.若BC=8cm,則△BCE的周長是
18
18
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,∠ABC=90°,D為底邊AC中點,過D點作DE⊥DF,交AB于E,交BC于F.若AE=12,F(xiàn)C=5,
(1)試說明DE=DF;
(2)求EF長.

查看答案和解析>>

同步練習(xí)冊答案