如圖,在?ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點G,點G在點A、E之間,連接CE、CF,EF,則以下四個結論一定正確的是( )
①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊△;④CG⊥AE.

A.只有①②
B.只有①②③
C.只有③④
D.①②③④
【答案】分析:根據(jù)題意,結合圖形,對選項一一求證,判定正確選項.
解答:解:∵△ABE、△ADF是等邊三角形
∴FD=AD,BE=AB
∵AD=BC,AB=DC
∴FD=BC,BE=DC
∵∠B=∠D,∠FDA=∠ABE
∴∠CDF=∠EBC
∴△CDF≌△EBC,故①正確;
∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°-∠CDA)=300°-∠CDA,
∠FDC=360°-∠FDA-∠ADC=300°-∠CDA,
∴∠CDF=∠EAF,故②正確;
同理可得:∠CBE=∠EAF=∠CDF,
∵BC=AD=AF,BE=AE,
∴△EAF≌△EBC,
∴∠AEF=∠BEC,
∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,
∴∠FEC=60°,
∵CF=CE,
∴△ECF是等邊三角形,故③正確;
在等邊三角形ABE中,
∵等邊三角形頂角平分線、底邊上的中線、高和垂直平分線是同一條線段
∴如果CG⊥AE,則G是AE的中點,∠ABG=30°,∠ABC=150°,題目缺少這個條件,CG⊥AE不能求證,故④錯誤.
故選B.
點評:本題考查了全等三角形的判定、等邊三角形的判定和性質(zhì)、平行四邊形的性質(zhì)等知識,綜合性強.考查學生綜合運用數(shù)學知識的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點O是AD邊的垂直平分線與BD的交點,點E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•犍為縣模擬)甲題:已知關于x的一元二次方程x2=2(1-m)x-m2的兩實數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設y=x1+x2,當y取得最小值時,求相應m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習冊答案