【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如圖9的兩幅尚不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)這次調(diào)查一共抽取了 名學(xué)生;
(2)請將條形統(tǒng)計圖補充完整;
(3)分別求出安全意識為“淡薄”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比、安全意識為“很強”的學(xué)生所在扇形的圓心角的度數(shù).
【答案】(1)120;(2)詳見解析;(3)10%;108°.
【解析】
(1)根據(jù)安全意識一般的有18人,所占的百分比是15%,據(jù)此即可求得調(diào)查的總?cè)藬?shù),再根據(jù)各層次人數(shù)之和等于總?cè)藬?shù)求得“較強”的人數(shù)及百分比的概念求得“很強、淡薄”的百分比可補全圖形;
(2)總?cè)藬?shù)乘以“較強”和“很強”的百分比之和.
解:(1)調(diào)查的總?cè)藬?shù)是:18÷15%=120(人),;
(2)如圖所示:
;
(3)安全意識為“淡薄”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比==10%;
安全意識為“很強”的學(xué)生所在扇形的圓心角的度數(shù)==108°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)
由于霧霾天氣頻發(fā),市場上防護口罩出現(xiàn)熱銷.某藥店準備購進一批口罩,已知1個A型口罩和3個B型口罩共需26元;3個A型口罩和2個B型口罩共需29元.
⑴ 求一個A型口罩和一個B型口罩的售價各是多少元?
⑵ 藥店準備購進這兩種型號的口罩共50個,其中A型口罩數(shù)量不少于35個,且不多于B型口罩的3倍,有哪幾種購買方案,哪種方案最省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,依據(jù)作圖痕跡回答下面的問題:
(1)和的位置關(guān)系是_________________;
(2)若,時,求的周長;
(3)若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,是斜邊的中點,交邊、于點、,連結(jié),且,若,,則的面積是( )
A.2B.2.5C.3D.3.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,.
(1)如圖1,點在邊上,,,求的面積.
(2)如圖2,點在邊上,過點作,,連結(jié)交于點,過點作,垂足為,連結(jié).求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為正方形的邊的延長線上一動點,以為一邊做正方形,以為一頂點作正方形,且在的延長線上(提示:正方形四條邊相等,且四個內(nèi)角為)
(1)若正方形、的面積分別為,,則正方形的面積為 (直接寫結(jié)果).
(2)過點做的垂線交的平分線于點,連接,試探求在點運動過程中,的大小是否發(fā)生變化,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題原型:如圖①,在銳角△ABC中,∠ABC=45°,AD⊥BC于點D,在AD上取點E,使DE=CD,連結(jié)BE.求證:BE=AC.
問題拓展:如圖②,在問題原型的條件下,F(xiàn)為BC的中點,連結(jié)EF并延長至點M,使FM=EF,連結(jié)CM.
(1)判斷線段AC與CM的大小關(guān)系,并說明理由.
(2)若AC=,直接寫出A、M兩點之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.
(1)設(shè)每件童裝降價x元時,每天可銷售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)
(2)每件童裝降價多少元時,平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x與反比例函數(shù)y=(x>0)的圖象交于點A(2,m);將直線y=x向下平移后與反比例函數(shù)y=(x>0)的圖象交于點B,且△AOB的面積為3.
(1)求k的值;
(2)求平移后所得直線的函數(shù)表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com