【題目】(山東泰安,第27題)(10分)如圖,在△ABC中,AB=AC,點(diǎn)P、D分別是BC、AC邊上的點(diǎn),且∠APD=∠B.
(1)求證:ACCD=CPBP;
(2)若AB=10,BC=12,當(dāng)PD∥AB時(shí),求BP的長(zhǎng).
【答案】(1)證明見試題解析;(2).
【解析】
試題分析:(1)先證∠APD=∠B=∠C,從而有△ABP∽△PCD,即可得到,即ABCD=CPBP,由AB=AC即可得到ACCD=CPBP;
(2)由PD∥AB得到∠APD=∠BAP,進(jìn)而得到∠BAP=∠C,從而有△BAP∽△BCA,根據(jù)相似三角形的性質(zhì)即可求出BP的長(zhǎng).
試題解析:(1)∵AB=AC,∴∠B=∠C,∵∠APD=∠B,∴∠APD=∠B=∠C,∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∴ABCD=CPBP,∵AB=AC,∴ACCD=CPBP;
(2)∵PD∥AB,∴∠APD=∠BAP,∵∠APD=∠C,∴∠BAP=∠C,∵∠B=∠B,∴△BAP∽△BCA,
∴.∵AB=10,BC=12,∴,∴BP=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖是某市區(qū)四個(gè)景點(diǎn)或單位(A為商店,C為工人文化宮,F(xiàn)為牌坊,G為市汽車站)的大致平面圖.可將方格的邊長(zhǎng)看作是一個(gè)單位長(zhǎng)度.
(1)請(qǐng)你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,分別寫出這四個(gè)地點(diǎn)的坐標(biāo).
(2)在商店A處有游客甲和游客乙,甲按線路A→D→E→F步行到達(dá)牌坊;乙按A→B→C步行到達(dá)工人文化宮,若一個(gè)單位長(zhǎng)度代表100米,你能比較一下兩人哪個(gè)走的路程較多嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解并填空:
(1)為了求代數(shù)式 的值,我們必須知道x的值.若x=1,則這個(gè)代數(shù)式的值為;若x=2,則這個(gè)代數(shù)式的值為 , ……可見,這個(gè)代數(shù)式的值因x的取值不同而變化.盡管如此,我們還是有辦法來考慮這個(gè)代數(shù)式的值的范圍.
(2)把一個(gè)多項(xiàng)式進(jìn)行部分因式分解可以解決求代數(shù)式的最大(或最。┲祮栴}.例如: =( ) = ,因?yàn)? 是非負(fù)數(shù),所以,這個(gè)代數(shù)式 的最小值是 , 這時(shí)相應(yīng)的x的平方是.
嘗試探究并解答:
(3)求代數(shù)式 的最小值,并寫出相應(yīng)x的值.
(4)求代數(shù)式 的最大值,并寫出相應(yīng)x的值.
(5)已知 ,且x的值在數(shù)1~4(包含1和4)之間變化,試探求此時(shí)y的不同變化范圍(直接寫出當(dāng)x在哪個(gè)范圍變化時(shí),對(duì)應(yīng)y的變化范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,小剛一家乘車去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車行駛時(shí)間x(h)之間的函數(shù)圖象如圖所示.
(1)從小剛家到該景區(qū)乘車一共用了多少時(shí)間?
(2)求線段AB對(duì)應(yīng)的函數(shù)解析式;
(3)小剛一家出發(fā)2.5小時(shí)時(shí)離目的地多遠(yuǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com