【題目】如圖,Rt△ABC中,∠C=90°,AB=4,F是線段AC上一點(diǎn),過點(diǎn)A的⊙F交AB于點(diǎn)D,E是線段BC上一點(diǎn),且ED=EB,則EF的最小值為_______________.
【答案】
【解析】
先取EF得中點(diǎn)O,連接DE、DE、DC,所以OC=EF,由AF=DF,BE=DE,得到∠A=∠ADF,∠B=∠BDE,從而∠ADF+∠BDE=∠A+∠B=90°,所以∠EDF=90°,因此OD=EF,得到EF=OC+OD,因此當(dāng)C、O、D三點(diǎn)在同一直線上,且CD⊥AB時(shí),OC+OD最短,由OE=OF,OC=OD,∠C=90°得到四邊形CEDF為矩形,于是過點(diǎn)C作CH⊥AB,此時(shí)點(diǎn)D與H重合,EF=OC+OD=CD=CH最短,由∠AFD=∠BED=90°,可知∠A=∠B=45°,從而CH為AB=,故EF的最小值為
取EF得中點(diǎn)O,連接DE、DE、DC,
∵∠C=90°,
∴OC=EF,∠A+∠B=90°,
∵AF=DF,BE=DE,
∴∠A=∠ADF,∠B=∠BDE,
∴∠ADF+∠BDE=∠A+∠B=90°,
∴∠EDF=90°,
∴OD=EF,
∴EF=OC+OD,
當(dāng)C. O、D三點(diǎn)在同一直線上,且CD⊥AB時(shí),OC+OD最短,
∵OE=OF,OC=OD,
∴四邊形CEDF為平行四邊形,
∵∠C=90°,
∴四邊形CEDF為矩形,
于是過點(diǎn)C作CH⊥AB,此時(shí)點(diǎn)D與H重合,EF=OC+OD=CD=CH最短,
∴∠AFD=∠BED=90°,
∴∠A=∠B=45°,
CH=AB=,
∴EF的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x+4的圖象是直線l,設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B.
(1)求線段AB的長度;
(2)設(shè)點(diǎn)M在射線AB上,將點(diǎn)M繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°到點(diǎn)N,以點(diǎn)N為圓心,NA的長為半徑作⊙N.
①當(dāng)⊙N與x軸相切時(shí),求點(diǎn)M的坐標(biāo);
②在①的條件下,設(shè)直線AN與x軸交于點(diǎn)C,與⊙N的另一個(gè)交點(diǎn)為D,連接MD交x軸于點(diǎn)E,直線m過點(diǎn)N分別與y軸、直線l交于點(diǎn)P、Q,當(dāng)△APQ與△CDE相似時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF;
(2)當(dāng)四邊形ABDF為菱形時(shí),求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F,E為頂點(diǎn)的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個(gè)公共點(diǎn)時(shí),請直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:Rt△OAB在直角坐標(biāo)系中的位置如圖所示,P(3,4)為OB的中點(diǎn),點(diǎn)C為折線OAB上的動點(diǎn),線段PC把Rt△OAB分割成兩部分。
問:點(diǎn)C在什么位置時(shí),分割得到的三角形與Rt△OAB相似(注:在圖上畫出所有符合要求的線段PC,并求出相應(yīng)的點(diǎn)C的坐標(biāo)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為5,O是AB邊的中點(diǎn),點(diǎn)E是正方形內(nèi)一動點(diǎn),OE=2,將線段CE繞C點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得CF,連OF,線段OF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,添加下列一個(gè)條件,不能使△ADE∽△ACB的是( ).
A. DE∥BCB. ∠AED=∠BC. =D. ∠ADE=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,E為BC上一點(diǎn),F為CD上一點(diǎn),且AE=AF.設(shè)△AEF的面積為y,CE=x.
(第11題)
(1)求y關(guān)于x的函數(shù)表達(dá)式.
(2)當(dāng)△AEF為正三角形時(shí),求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點(diǎn)O是AC邊上的一個(gè)動點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com