【題目】如圖,RtABC中,∠C=90°AB=4,F是線段AC上一點(diǎn),過點(diǎn)A的⊙FAB于點(diǎn)D,E是線段BC上一點(diǎn),且ED=EB,則EF的最小值為_______________.

【答案】

【解析】

先取EF得中點(diǎn)O,連接DE、DE、DC,所以OC=EF,由AF=DFBE=DE,得到∠A=ADF,∠B=BDE,從而∠ADF+BDE=A+B=90°,所以∠EDF=90°,因此OD=EF,得到EF=OC+OD,因此當(dāng)C、OD三點(diǎn)在同一直線上,且CDAB時(shí),OC+OD最短,由OE=OF,OC=OD,∠C=90°得到四邊形CEDF為矩形,于是過點(diǎn)CCHAB,此時(shí)點(diǎn)DH重合,EF=OC+OD=CD=CH最短,由∠AFD=BED=90°,可知∠A=B=45°,從而CHAB=,故EF的最小值為

EF得中點(diǎn)O,連接DE、DE、DC

∵∠C=90°,

OC=EF,A+B=90°,

AF=DF,BE=DE,

∴∠A=ADF,∠B=BDE

∴∠ADF+BDE=A+B=90°,

∴∠EDF=90°

OD=EF,

EF=OC+OD,

當(dāng)C. O、D三點(diǎn)在同一直線上,且CDAB時(shí),OC+OD最短,

OE=OF,OC=OD,

∴四邊形CEDF為平行四邊形,

∵∠C=90°

∴四邊形CEDF為矩形,

于是過點(diǎn)CCHAB,此時(shí)點(diǎn)DH重合,EF=OC+OD=CD=CH最短,

∴∠AFD=BED=90°,

∴∠A=B=45°,

CH=AB=,

EF的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=x+4的圖象是直線l,設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B

1)求線段AB的長度;

2)設(shè)點(diǎn)M在射線AB上,將點(diǎn)M繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°到點(diǎn)N,以點(diǎn)N為圓心,NA的長為半徑作⊙N

①當(dāng)⊙Nx軸相切時(shí),求點(diǎn)M的坐標(biāo);

②在①的條件下,設(shè)直線ANx軸交于點(diǎn)C,與⊙N的另一個(gè)交點(diǎn)為D,連接MDx軸于點(diǎn)E,直線m過點(diǎn)N分別與y軸、直線l交于點(diǎn)P、Q,當(dāng)APQCDE相似時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC2,∠BAC45°,△AEF是由△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D

1)求證:BECF;

2)當(dāng)四邊形ABDF為菱形時(shí),求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=6,EBC邊的中點(diǎn),點(diǎn)P在線段AD上,過PPFAEF,設(shè)PA=x

1)求證:PFA∽△ABE

2)當(dāng)點(diǎn)P在線段AD上運(yùn)動時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F,E為頂點(diǎn)的三角形也與ABE相似?若存在,請求出x的值;若不存在,請說明理由;

3)探究:當(dāng)以D為圓心,DP為半徑的⊙D線段AE只有一個(gè)公共點(diǎn)時(shí),請直接寫出x滿足的條件:   

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:RtOAB在直角坐標(biāo)系中的位置如圖所示,P(3,4)OB的中點(diǎn),點(diǎn)C為折線OAB上的動點(diǎn),線段PCRtOAB分割成兩部分。

問:點(diǎn)C在什么位置時(shí),分割得到的三角形與RtOAB相似(注:在圖上畫出所有符合要求的線段PC,并求出相應(yīng)的點(diǎn)C的坐標(biāo)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為5OAB邊的中點(diǎn),點(diǎn)E是正方形內(nèi)一動點(diǎn),OE2,將線段CEC點(diǎn)逆時(shí)針旋轉(zhuǎn)90°CF,連OF,線段OF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,添加下列一個(gè)條件,不能使△ADE∽△ACB的是( ).

A. DE∥BCB. ∠AED∠BC. D. ∠ADE∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB4,EBC上一點(diǎn),FCD上一點(diǎn),且AEAF.設(shè)AEF的面積為y,CEx.

(11)

(1)y關(guān)于x的函數(shù)表達(dá)式.

(2)當(dāng)AEF為正三角形時(shí),求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,點(diǎn)OAC邊上的一個(gè)動點(diǎn),過點(diǎn)O作直線MNBC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F

1)求證:EO=FO;

2)當(dāng)點(diǎn)O運(yùn)動到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案