精英家教網 > 初中數學 > 題目詳情

【題目】小明為準備體育中考,每天早晨堅持鍛煉,某天他慢跑到江邊,休息一會后快跑回家,能大致反映小明離家的距離y(m)與時間x(s)的函數關系圖象是(
A.
B.
C.
D.

【答案】A
【解析】解:∵他慢跑離家到江邊, ∴隨著時間的增加離家的距離越來越遠,
∵休息了一會,
∴他離家的距離不變,
又∵后快跑回家,
∴他離家越來越近,直至為0,
∵去時快跑,回時慢跑,
∴小明離家的距離y與時間x的函數關系的大致圖象是A.
故選A.
【考點精析】本題主要考查了函數的圖象的相關知識點,需要掌握函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,透明的圓柱形容器(容器厚度忽略不計)的高為12cm,底面周長為10cm,在容器內壁離容器底部3cm的點B處有一飯粒,此時一只螞蟻正好在容器外壁,且離容器上沿3cm的點A處,則螞蟻吃到飯粒需爬行的最短路徑是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市某中學有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學校計劃在空地上種植草皮,經測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面積.

(2)若每種植1平方米草皮需要200元,問總共需投入多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙、丙三位同學在操場上互相傳球,假設他們相互間傳球是等可能的,并且由甲首先開始傳球.
(1)經過2次傳球后,球仍回到甲手中的概率是
(2)請用列舉法(畫樹狀圖或列表)求經過3次傳球后,球仍回到甲手中的概率;
(3)猜想并直接寫出結論:經過n次傳球后,球傳到甲、乙這兩位同學手中的概率:P(球傳到甲手中)和P(球傳到乙手中)的大小關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】矩形ABCD中,AB=4,AD=3,P,Q是對角線BD上不重合的兩點,點P關于直線AD,AB的對稱點分別是點E、F,點Q關于直線BC、CD的對稱點分別是點G、H.若由點E、F、G、H構成的四邊形恰好為菱形,則PQ的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若一個矩形的一邊是另一邊的兩倍,則稱這個矩形為方形,如圖1,矩形ABCD中,BC=2AB,則稱ABCD為方形.

(1)設a,b是方形的一組鄰邊長,寫出a,b的值(一組即可).
(2)在△ABC中,將AB,AC分別五等分,連結兩邊對應的等分點,以這些連結線為一邊作矩形,使這些矩形的邊B1C1 , B2C2 , B3C3 , B4C4的對邊分別在B2C2 , B3C3 , B4C4 , BC上,如圖2所示.
①若BC=25,BC邊上的高為20,判斷以B1C1為一邊的矩形是不是方形?為什么?
②若以B3C3為一邊的矩形為方形,求BC與BC邊上的高之比.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店購進商品后,都加價40%作為銷售價,元旦期間搞優(yōu)惠促銷,決定由顧客抽獎確定折扣,某顧客購買甲、乙兩種商品,分別抽到七折和九折,共付款399元,商場共盈利49元,甲、乙兩種商品的進價分別為多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

1)將圖1中的三角板繞點O逆時針旋轉至圖2,使一邊OMBOC的內部,且恰好平分BOC.問:此時直線ON是否平分AOC?請說明理由.

2)將圖1中的三角板繞點O以每秒的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角AOC,則t的值為 (直接寫出結果).

3)將圖1中的三角板繞點O順時針旋轉至圖3,使ONAOC的內部,求AOMNOC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P是反比例函數y= (k<0)圖象上的點,PA垂直x軸于點A(﹣1,0),點C的坐標為(1,0),PC交y軸于點B,連結AB,已知AB=

(1)k的值是
(2)若M(a,b)是該反比例函數圖象上的點,且滿足∠MBA<∠ABC,則a的取值范圍是

查看答案和解析>>

同步練習冊答案