【題目】如圖,平面直角坐標系中,已知直線y=x上一點P(1,1),C為y軸上一點,連接PC,線段PC繞點P順時針旋轉90°至線段PD,過點D作直線AB⊥x軸,垂足為B,直線AB與直線y=x交于點A,且BD=2AD,連接CD,直線CD與直線y=x交于點Q,則點Q的坐標為( )
A.(,) B.(3,3) C. (,) D.(,)
【答案】D
【解析】
試題分析:過P作MN⊥y軸,交y軸于M,交AB于N,過D作DH⊥y軸,交y軸于H, ∠CMP=∠DNP=∠CPD=90°,
∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,
∴∠MCP=∠DPN,
∵P(1,1),
∴OM=BN=1,PM=1,
∴△MCP≌△NPD,
∴DN=PM,PN=CM,
∵BD=2AD,
∴設AD=x,BD=2x,
∵P(1,1),
∴DN=2x﹣1,
則2x﹣1=1,
解得:x=1,即BD=2,C的坐標是(0,3),
∵直線y=x,
∴AB=OB=3,
在Rt△DNP中,由勾股定理得:PC=PD= 在Rt△MCP中,由勾股定理得:CM=2
則C的坐標是(0,3),設直線CD的解析式是y=kx+3,
把D(3,2)代入得:k=﹣
即直線CD的解析式是y=﹣x+3, 即方程組為:
解得:,即Q的坐標是(,)
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,F(xiàn)是BC上一點,F(xiàn)G⊥AB,垂足為G.
(1)過C點畫CD⊥AB,垂足為D;
(2)過D點畫DE∥BC,交AC于E;
(3)求證:∠EDC=∠GFB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在Rt△ABC中,∠ACB=90°,AC=BC,BM⊥CM于M,且CM>BM
(1)如圖1,過點A作AF⊥CM于F,直線寫出線段BM、AF、MF的數(shù)量關系是
(2)如圖2,D為BM延長線上一點,連AD以AD為斜邊向右側作等腰Rt△ADE,再過點E作EN⊥BM于N,求證:CM+EN=MN;
(3)將(2)中的△ADE繞點A順時針旋轉任意角α后,連BD取BD中點P,連CP、EP,作出圖形,試判斷CP、EP的數(shù)量和位置關系并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com