【題目】校車安全是近幾年社會關注的熱點問題,安全隱患主要是超速和超載.某中學九年級數(shù)學活動小組進行了測試汽車速度的實驗,如圖,先在筆直的公路l旁選取一點A,在公路l上確定點B、C,使得AC⊥l,∠BAC=60℃,再在AC上確定點D,使得∠BDC=75°,測得AD=40米,已知本路段對校車限速是50千米/時,測得某校車從B到C勻速行駛用時10秒。
(1)、求CD的長。(結果保留根號)
(2)、問這輛車在本路段是否超速?請說明理由(參考數(shù)據(jù):=1.41,=1.73
【答案】(1)、20;(2)、沒有超速.
【解析】
試題分析:(1)、過點D作DE⊥AB于點E,根據(jù)題意得出△CBD≌△EBD,則CD=DE,根據(jù)Rt△ADE中∠A=60°,AD=40米得出DE的長度;(2)、根據(jù)題意得出AC的長度,根據(jù)Rt△ABC得出BC的長度,然后求出速度.
試題解析:(1)、過點D作DE⊥AB于點E,∵∠CDB=75°,∠BAC=60°,∴∠CBD=15°,∠EBD=15°。
在Rt△CBD和Rt△EBD中,∵∠CBD=∠EBD,∠DCB =∠DEB,BD=BD, ∴△CBD≌△EBD(AAS)。
∴CD=DE。在Rt△ADE中,∠A=60°,AD=40米, ∴DE=ADsin60°=20米,∴CD=20米
(2)、∵AD=40米,CD=20米∴AC=AD+CD=(40+20)米,
在Rt△ABC中,BC=ACtan∠A=(40+60)米,
∴速度=≈12.92(米/秒)。 ∵12.92米/秒=46.512千米/小時<50千米/時,∴該車沒有超速。
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了籌備校慶活動,準備印制一批校慶紀念冊.該紀念冊分A、B兩種,每冊都需要10張8K大小的紙,其中A紀念冊有4張彩色頁和6張黑白頁組成;B紀念冊有6張彩色頁和4張黑白頁組成.印制這批紀念冊的總費用由制版費和印制費兩部分組成,制版費與印數(shù)無關,價格為:彩色頁300元∕張,黑白頁50元∕張;印制費與總印數(shù)的關系見下表.
總印數(shù)a(單位:千冊) | 1≤a<5 | 5≤a<10 |
彩色(單位:元∕張) | 2.2 | 2.0 |
黑白(單位:元∕張) | 0.7 | 0.5 |
(1)印制這批紀念冊的制版費為元.
(2)若印制A、B兩種紀念冊各2千冊,則共需多少費用?
(3)如果該校共印制了A、B兩種紀念冊6千冊,一共花費了75500元,則該校印制了A、B兩種紀念冊各多少冊?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年舌尖上的浪費讓人觸目驚心,據(jù)統(tǒng)計中國每年浪費的食物總量折合糧食約499.5億千克,這個數(shù)用科學記數(shù)法應表示為( 。
A. 4.995×1010B. 49.95×1010
C. 0.4995×1011D. 4.995×1011
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖1,在正方形ABCD中,E、F分別是邊AD、DC上的點,且AF⊥BE.
(1)求證:AF=BE;
(2)如圖2,在正方形ABCD中,M、N、P、Q分別是邊AB、BC、CD、DA上的點,且MP⊥NQ.MP與NQ是否相等?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點,AF,DE相交于點G,當E,F(xiàn)分別為邊BC,CD的中點時,有:①AF=DE;②AF⊥DE成立.
試探究下列問題:
(1)如圖1,若點E不是邊BC的中點,F(xiàn)不是邊CD的中點,且CE=DF,上述結論①,②是否仍然成立?(請直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點E,F(xiàn)分別在CB的延長線和DC的延長線上,且CE=DF,此時,上述結論①,②是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;
(3)如圖3,在(2)的基礎上,連接AE和EF,若點M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點,請判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于點O,點O也是正方形A′B′C′O的一個頂點,兩個正方形的邊長都等于1,當正方形A′B′C′O繞頂點O轉動時,兩個正方形重疊部分的面積大小有什么規(guī)律?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】己知:如圖,E、F分別是ABCD的AD、BC邊上的點,且AE=CF.
(1)求證:△ABE≌△CDF;
(2)若M、N分別是BE、DF的中點,連接MF、EN,試判斷四邊形MFNE是怎樣的四邊形,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com