如圖,在平面直角坐標系xOy中,已知⊙O半徑為1,且與兩坐標軸分別交于A、B、C、D四點.過點A和點C分別作⊙O的切線MA、NC,它們分別與直線y=x交于點M、N,
(1)寫出點M、D、N的坐標;
(2)拋物線過點M、D、N,它的對稱軸交x軸于點E,連接DE,并延長DE交圓O于F,求cos∠BDF的值與EF的長.
(3)探索:將⊙O作怎樣的平移,才能使⊙O與x軸相切且它的圓心O在拋物線上.

【答案】分析:(1)根據(jù)⊙O半徑為1,得出D點坐標,再利用CO=1,AO=1,點M、N在直線y=x上,即可求出答案;
(2)根據(jù)待定系數(shù)法求出拋物線的解析式,再利用配方法求出頂點坐標即可,再利用解直角三角形求出cos∠BDF的值;
(3)根據(jù)平移后的圓心O在x軸的上方時,可設(shè)平移后的圓心O′的坐標為(m,1),得出O′的坐標為(0,1)或(1,1),再利用當平移后的圓心O在x軸的下方時,可設(shè)平移后的圓心O″的坐標為(n,-1),得出O″的坐標為(-1,-1)或(2,-1),再利用平移分析即可.
解答:解:(1)∵⊙O半徑為1,
∴D(0,1),
∵過點A和點C分別作⊙O的切線MA、NC,它們分別與直線y=x交于點M、N,
CO=1,AO=1,
∴M(-1,-1)、N(1,1);

(2)設(shè)拋物線的解析式為y=ax2+bx+c.
∵點D、M、N在拋物線上.
∴得:
解之,得:
∴拋物線的解析式為:y=-x2+x+1.
,
∴拋物線的對稱軸為,

連接BF,∠BFD=90°,
,

,

在直角三角形DOE中,cos∠BDF=

(3)∵⊙O半徑為1,平移后的⊙O要與x軸相切且它的圓心O在拋物線上,
∴平移后的圓心O必在平行于x軸且到x軸的距離為1的直線與拋物線的交點上
當平移后的圓心O在x軸的上方時,可設(shè)平移后的圓心O′的坐標為(m,1).
則-m2+m+1=1,
解得m1=0,m2=1,
∴O′的坐標為(0,1)或(1,1)
當平移后的圓心O在x軸的下方時,可設(shè)平移后的圓心O″的坐標為(n,-1).
則-n2+n+1=-1,
解得n1=-1,n2=2,
∴O″的坐標為(-1,-1)或(2,-1)
∴①將⊙O沿著y軸的正方向平移1個單位,能使⊙O與x軸相切且它的圓心O在拋物線上;
②將⊙O沿著y軸的正方向平移1個單位后,再沿著x軸的正方向平移1個單位(或?qū)ⅰ袿沿著直線y=x的向上方向平移個單位),能使⊙O與x軸相切且它的圓心O在拋物線上;
③將⊙O沿著y軸的負方向平移1個單位后,再沿著x軸的負方向平移1個單位,(或?qū)ⅰ袿沿著直線y=x的向下方向平移個單位)能使⊙O與x軸相切且它的圓心O在拋物線上;
④將⊙O沿著y軸的負方向平移1個單位后,再沿著x軸的正方向平移2個單位,(或?qū)ⅰ袿沿著直線的向下方向平移個單位)能使⊙O與x軸相切且它的圓心O在拋物線上;
點評:此題主要考查了二次函數(shù)的綜合應用,主要利用一次函數(shù)的性質(zhì)以及平移的性質(zhì)以及二次函數(shù)的性質(zhì)綜合應用,數(shù)形結(jié)合得出,題目綜合性較強.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習冊答案