如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左則,B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,―3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn)。
⑴求這個(gè)二次函數(shù)的表達(dá)式;
⑵連結(jié)PO、PC,在同一平面內(nèi)把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由;
⑶當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
(1) ;(2) (3) P點(diǎn)的坐標(biāo)為,四邊形ABPC的面積的最大值為.
【解析】
試題分析:(1)把B、C兩點(diǎn)的坐標(biāo)代入二次函數(shù)y=x2+bx+c即可求出bc的值,故可得出二次函數(shù)的解析式;
(2)過點(diǎn)P作y軸的平行線與BC交于點(diǎn)Q,與OB交于點(diǎn)E,設(shè)P(x,x2-2x-3),易得,直線BC的解析式為y=x-3則Q點(diǎn)的坐標(biāo)為(x,x-3),再根據(jù)S四邊形ABPC=S△ABC+S△BPQ+S△CPQ即可得出結(jié)論.
試題解析:⑴將B、C兩點(diǎn)坐標(biāo)代入得
解得:. 所以二次函數(shù)的表示式為:
⑵存在點(diǎn)P,使四邊形POP′C為菱形,設(shè)P點(diǎn)坐標(biāo)為,PP′交CO于E,
若四邊形POP′C是菱形,則有PC=PO,連結(jié)PP′,則PE⊥OC于E,
∴OE=EC=,
∴
∴,
解得,(不合題意,舍去)
∴P點(diǎn)的坐標(biāo)為
⑶過點(diǎn)P作y軸的平行線與BC交于點(diǎn)Q,與OB交于點(diǎn)F,設(shè)P,易得,直線BC的解析式為,則Q點(diǎn)的坐標(biāo)為
當(dāng)時(shí),四邊形ABPC的面積最大
此時(shí)P點(diǎn)的坐標(biāo)為,四邊形ABPC的面積的最大值為.
考點(diǎn): 二次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com