精英家教網(wǎng)已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線,以AB上一點(diǎn)O為圓心,AD為弦作⊙O.
(1)在圖中作出⊙O(不寫(xiě)作法,保留作圖痕跡),判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AC=3,tanB=
34
,求⊙O的半徑長(zhǎng).
分析:(1)作線段AD的垂直平分線,交AB于O點(diǎn),以O(shè)為圓心,OA為半徑畫(huà)圓即可.連接OD,由AD為角平分線可知∠OAD=∠CAD,由OA=OD可知∠OAD=∠ODA,得出內(nèi)錯(cuò)角相等,判斷OD∥AC即可;
(2)在Rt△ABC中,由AC=3,tanB=
3
4
,得BC=4,利用勾股定理得AB=5,設(shè)OA=OD=R,則OB=5-R,由△OBD∽△ABC,利用相似比求R的值.
解答:精英家教網(wǎng)解:(1)直線BC與⊙O相切.理由如下:
作圖如圖所示,連接OD,
∵AD為角平分線,∴∠OAD=∠CAD,
又∵OA=OD,∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴OD∥AC,
∵AC⊥BC,
∴OD⊥BC,
∴直線BC與⊙O相切;

(2)在Rt△ABC中,∵AC=3,tanB=
3
4
,
AC
BC
=
3
4
,解得BC=4,由勾股定理,得AB=
AC2+BC2
=5,
設(shè)OA=OD=R,則OB=5-R,
∵∠ODB=∠ACB=90°,
∴OD∥AC,
∴△OBD∽△ABC,
OD
AC
=
OB
AB
,即
R
3
=
5-R
5

解得R=
15
8
,∴⊙O的半徑為
15
8
點(diǎn)評(píng):本題考查了圓的作圖,圓的切線的判定,相似三角形的判定與性質(zhì),解直角三角形是知識(shí).關(guān)鍵是明確圓的有關(guān)性質(zhì),將圓的問(wèn)題轉(zhuǎn)化為三角形的問(wèn)題進(jìn)行解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知在Rt△ABC中,∠ACB=90°,CD是AB上的中線,BC=2
5
,cos∠ACD=
2
3
,則CD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、已知在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,那么BC=
8
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2的值等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知在Rt△ABC中,∠C=90°,sinA=
513
,求tanB;
(2)如圖,小方在五月一日假期中到郊外放風(fēng)箏,風(fēng)箏飛到C 處時(shí)的線長(zhǎng)為20米,此時(shí)小方正好站在A處,并測(cè)得∠CBD=60°,牽引底端B離地面1.5米,求此時(shí)風(fēng)箏離地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,點(diǎn)E從點(diǎn)A出發(fā)沿AB以每秒1cm的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)D從點(diǎn)C出發(fā)沿CA以每秒2cm的速度向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0<t<6),過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F.
(1)如圖①,在D、E運(yùn)動(dòng)的過(guò)程中,四邊形AEFD是平行四邊形,請(qǐng)說(shuō)明理由;
(2)連接DE,當(dāng)t為何值時(shí),△DEF為直角三角形?
(3)如圖②,將△ADE沿DE翻折得到△A′DE,試問(wèn)當(dāng)t為何值時(shí),四邊形 AEA′D為菱形?

查看答案和解析>>

同步練習(xí)冊(cè)答案