(2008•蘇州)如圖,四邊形ABCD的對角線AC與BD相交于O點,∠1=∠2,∠3=∠4.
求證:(1)△ABC≌△ADC;
(2)BO=DO.

【答案】分析:用AAS判定△ABC≌△ADC,得出AB=AD,再利用SAS判定△ABO≌△ADO,從而得出BO=DO.
解答:證明:(1)在△ABC和△ADC中,
,
∴△ABC≌△ADC(ASA);

(2)∵△ABC≌△ADC,
∴AB=AD.
又∵∠1=∠2,AO=AO,
,
∴△ABO≌△ADO(SAS).
∴BO=DO.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、SSA、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•蘇州)如圖,拋物線y=a(x+1)(x-5)與x軸的交點為M,N.直線y=kx+b與x軸交于P(-2,0),與y軸交于C.若A,B兩點在直線y=kx+b上,且AO=BO=,AO⊥BO.D為線段MN的中點,OH為Rt△OPC斜邊上的高.
(1)OH的長度等于______;k=______,b=______;
(2)是否存在實數(shù)a,使得拋物線y=a(x+1)(x-5)上有一點E,滿足以D,N,E為頂點的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式,同時探索所求得的拋物線上是否還有符合條件的E點(簡要說明理由);并進一步探索對符合條件的每一個E點,直線NE與直線AB的交點G是否總滿足PB•PG<10,寫出探索過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年江蘇省蘇州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•蘇州)如圖,拋物線y=a(x+1)(x-5)與x軸的交點為M,N.直線y=kx+b與x軸交于P(-2,0),與y軸交于C.若A,B兩點在直線y=kx+b上,且AO=BO=,AO⊥BO.D為線段MN的中點,OH為Rt△OPC斜邊上的高.
(1)OH的長度等于______;k=______,b=______;
(2)是否存在實數(shù)a,使得拋物線y=a(x+1)(x-5)上有一點E,滿足以D,N,E為頂點的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式,同時探索所求得的拋物線上是否還有符合條件的E點(簡要說明理由);并進一步探索對符合條件的每一個E點,直線NE與直線AB的交點G是否總滿足PB•PG<10,寫出探索過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河北省中考數(shù)學(xué)考前模擬測試精選題(一)(解析版) 題型:解答題

(2008•蘇州)如圖,帆船A和帆船B在太湖湖面上訓(xùn)練,O為湖面上的一個定點,教練船靜候于點O,訓(xùn)練時要求A、B兩船始終關(guān)于O點對稱.以O(shè)為原點,建立如圖所示的坐標(biāo)系,x軸、y軸的正方向分別表示正東、正北方向.設(shè)A、B兩船可近似看成在雙曲線y=上運動,湖面風(fēng)平浪靜,雙帆遠影優(yōu)美,訓(xùn)練中檔教練船與A、B兩船恰好在直線y=x上時,三船同時發(fā)現(xiàn)湖面上有一遇險的C船,此時教練船測得C船在東南45°方向上,A船測得AC與AB的夾角為60°,B船也同時測得C船的位置(假設(shè)C船位置不再改變,A、B、C三船可分別用A、B、C三點表示).
(1)發(fā)現(xiàn)C船時,A、B、C三船所在位置的坐標(biāo)分別為A(______,______)、B(______,______)和C(______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省蘇州市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:選擇題

(2008•蘇州)如圖,AB為⊙O的直徑,AC交⊙O于E點,BC交⊙O于D點,CD=BD,∠C=70度.現(xiàn)給出以下四個結(jié)論:①∠A=45°;②AC=AB;③=;④CE×AB=2BD2.其中正確結(jié)論的序號是( )

A.①②
B.②③
C.②④
D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年江蘇省蘇州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2008•蘇州)如圖,AB為⊙O的直徑,AC交⊙O于E點,BC交⊙O于D點,CD=BD,∠C=70度.現(xiàn)給出以下四個結(jié)論:①∠A=45°;②AC=AB;③=;④CE×AB=2BD2.其中正確結(jié)論的序號是( )

A.①②
B.②③
C.②④
D.③④

查看答案和解析>>

同步練習(xí)冊答案