【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長AE至點(diǎn)F,使EF=AE,連接FB、FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=,BE=1,求半圓的面積.
【答案】(1)見解析;(2)半圓的面積是
【解析】
(1)由AB是直徑可得∠AEB=90°,根據(jù)等腰三角形的性質(zhì)可得BE=CE,進(jìn)而可得四邊形ABFC是平行四邊形,再根據(jù)菱形的定義即可證得結(jié)論;
(2)連接,如圖,設(shè),根據(jù)勾股定理可得關(guān)于x的方程,解方程即可求出x,進(jìn)一步即可求出半圓面積.
(1)證明:∵AB是直徑,
∴∠AEB=90°,即AE⊥BC,
∵AB=AC,
∴BE=CE,
∵AE=EF,
∴四邊形ABFC是平行四邊形,
∵AC=AB,
∴平行四邊形ABFC是菱形;
(2)解:連接,如圖,設(shè),則AC=x,
∵AB是直徑,∴∠ADB=∠BDC=90°,
∴AB2﹣AD2=CB2﹣CD2,
則,
解得:(舍),,
∴半圓的面積.
答:半圓的面積是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 已知等邊, 點(diǎn)在射線上(不與重合),連接, 將射線繞點(diǎn)逆時針旋轉(zhuǎn)交射線于點(diǎn),過點(diǎn)作交直線于點(diǎn).
(1)如圖1,當(dāng)點(diǎn)D為線段BC中點(diǎn)時,請直接寫出CF,BE,CD三條線段之間的數(shù)量;
(2)如圖2,“點(diǎn)在線段上且不是中點(diǎn)時,中結(jié)論是否成立?若成立,請說明理由。若不成立,請寫出正確的結(jié)論并說明理由;
(3)若,當(dāng)時,請直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=2 ,AD=2,點(diǎn)P是對角線BD上一動點(diǎn)(不與B,D重合),連接AP,過點(diǎn)P作PE⊥AP,交DC于點(diǎn)E,
(1)求證:∠PAD=∠PEC;
(2)當(dāng)點(diǎn)P是BD的中點(diǎn)時,求DE的值;
(3)在點(diǎn)P運(yùn)動過程中,當(dāng)DE= 時,求BP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式規(guī)律:① 52-22=3×7;②72-42=3×11;③ 92-62=3×11;…;根據(jù)上面等式的規(guī)律:
(1)寫出第6個和第n個等式;
(2)證明你寫的第n個等式的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,正方形OABC如圖放置,反比例函數(shù)的圖像交AB于點(diǎn)D,交BC于點(diǎn)E,已知A(,0),∠DOE=30°,則k的值為( )
A.B.C.3D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直角三角形紙片的兩直角邊AC與BC的比為3:4,首先將△ABC如圖1所示折疊,使點(diǎn)C落在AB上,折痕為BD,然后將△ABD如圖2所示折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,則sin∠DEA的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年第七屆世界軍人運(yùn)動會(7thCISMMilitaryWorldGames)于2019年10月18日至27日在中國武漢舉行,這是中國第一次承辦綜合性國際軍事賽事,也是繼北京奧運(yùn)會后,中國舉辦的規(guī)模最大的國際體育盛會.某射擊運(yùn)動員在一次訓(xùn)練中射擊了10次,成績?nèi)鐖D所示.下列結(jié)論中不正確的有( 。﹤
①眾數(shù)是8;②中位數(shù)是8;③平均數(shù)是8;④方差是1.6.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,、是兩座現(xiàn)代化城市,是一個古城遺址,城在城的北偏東,在城的北偏西,城在城的正東方向,且城與城相距120千米,現(xiàn)在、兩城市修建一條筆直的高速公路.
(1)請你計算公路的長度(結(jié)果保留根號);
(2)若以為圓心,以60千米為半徑的圓形區(qū)域內(nèi)為古跡和地下文物保護(hù)區(qū),請你分析公路會不會穿越這個保護(hù)區(qū),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),點(diǎn)B位于(4,0)、(5,0)之間,與y軸交于點(diǎn)C,對稱軸為直線x=2,直線y=﹣x+c與拋物線y=ax2+bx+c交于C,D兩點(diǎn),D點(diǎn)在x軸上方且橫坐標(biāo)小于5,則下列結(jié)論:①4a+b+c>0;②a﹣b+c<0;③m(am+b)<4a+2b(其中m為任意實(shí)數(shù));④a<﹣1,其中正確的是( )
A.①②③④B.①②③C.①②④D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com