【題目】函數(shù)y=ax2+1與y= (a≠0)在同一平面直角坐標系中的圖象可能是(
A.
B.
C.
D.

【答案】B
【解析】解:a>0時,y=ax2+1開口向上,頂點坐標為(0,1), y= 位于第一、三象限,沒有選項圖象符合,
a<0時,y=ax2+1開口向下,頂點坐標為(0,1),
y= 位于第二、四象限,B選項圖象符合.
故選:B.
【考點精析】掌握反比例函數(shù)的圖象和二次函數(shù)的圖象是解答本題的根本,需要知道反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點;二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分別為B、P、D,且三個垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.

(1)證明:ABCD=PBPD.
(2)如圖乙,也是一個“三垂圖”,上述結論成立嗎?請說明理由.
(3)已知拋物線與x軸交于點A(﹣1,0),B(3,0),與y軸交于點(0,﹣3),頂點為P,如圖丙所示,若Q是拋物線上異于A、B、P的點,使得∠QAP=90°,求Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,直線y=﹣x+3與y=3x﹣5相交于C點,分別與x軸交于A、B兩點.P、Q分別為直線y=﹣x+3與y=3x﹣5上的點.
(1)求△ABC的面積;
(2)若P、Q關于原點成中心對稱,求P點的坐標;
(3)若△QPC≌△ABC,求Q點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校計劃選購甲、乙兩種圖書作為“校園讀書節(jié)”的獎品,已知甲種圖書單價比乙種圖書貴4元,用3000元購進甲種圖書的數(shù)量與用2400元購進乙種圖書的數(shù)量相同.
(1)甲、乙兩種圖書的單價分別為多少元?
(2)學校計劃購買這兩種圖書共100本,請求出所需經(jīng)費W(單位:元)與購買甲種圖書m(單位:本)之間的函數(shù)關系式;
(3)在(2)的條件下,要使投入的經(jīng)費不超過1820元,且使購買的甲種圖書的數(shù)量不少于乙種圖書數(shù)量,則共有幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=60°,點E為直線AC上一點,D為直線BC上的一點,且DA=DE. 當點D在線段BC上時,如圖①,易證:BD+AB=AE;
當點D在線段CB的延長線上時,如圖②、圖③,猜想線段BD,AB和AE之間又有怎樣的數(shù)量關系?寫出你的猜想,并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某超市地下停車場入口的設計圖,請根據(jù)圖中數(shù)據(jù)計算CE的長度.(結果保留小數(shù)點后兩位;參考數(shù)據(jù):sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),拋物線y=﹣ x2+x+c與x軸交于A、B兩點,與y軸交于點C,其中點A的坐標為(﹣2,0).

(1)求此拋物線的解析式;
(2)①若點D是第一象限內(nèi)拋物線上的一個動點,過點D作DE⊥x軸于E,連接CD,以OE為直徑作⊙M,如圖(2),試求當CD與⊙M相切時D點的坐標;
②點F是x軸上的動點,在拋物線上是否存在一點G,使A、C、G、F四點為頂點的四邊形是平行四邊形?若存在,求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習委員統(tǒng)計全班50位同學對語文、數(shù)學、英語、體育、音樂五個科目最喜歡情況,所得數(shù)據(jù)用表格與條形圖描述如下:

科目

語文

數(shù)學

英語

體育

音樂

人數(shù)

10

a

15

3

2


(1)表格中a的值為;
(2)補全條形圖;
(3)小李是最喜歡體育之一,小張是最喜歡音樂之一,計劃從最喜歡體育、音樂的人中,每科目各選1人參加學校訓練,用列表或樹形圖表示所有結果,并求小李、小張至少有1人被選上的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某數(shù)學興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結果精確到0.1m).(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

同步練習冊答案