【題目】某體育用品商店購進一批乒乓球拍,每件進價為10元,售價為30元,每星期可賣出40件.商家決定降價促銷,根據(jù)市場調查,每降價1元,每星期可多賣出4件.
(1)求商家降價前每星期的銷售利潤為多少元?
(2)降價后,商家要使每星期的銷售利潤最大,應將售價定為多少元?最大銷售利潤是多少?
【答案】(1)商家降價前每星期的銷售利潤為800元;(2)降價后,商家要使每星期的銷售利潤最大,應將售價定為25元,最大銷售利潤是900元;
【解析】
(1)原每天利潤為30-10=20元,每星期可賣出40件,則(30-10)×40=800元;
(2)設將售價定為x元,則銷售利潤為,求出y的最大值以及x的取值即可.
解:
(1)∵每天利潤為30-10=20元,
∴降價前每星期的銷售利潤為:(30-10)×40=800元;
答:商家降價前每星期的銷售利潤為800元.
(2)設將售價定為x元,則銷售利潤=;
∴當x=25時,y有最大值900元.
答:降價后,商家要使每星期的銷售利潤最大,應將售價定為25元,最大銷售利潤是900元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關系式;
(2)設點P是直線l上的一個動點,當點P到點A、點B的距離之和最短時,求點P的坐標;
(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場秋季計劃購進一批進價為每件40元的T恤進行銷售.
(1)根據(jù)銷售經(jīng)驗,應季銷售時,若每件T恤的售價為60元,可售出400件;若每件T恤的售價每提高1元,銷售量相應減少10件.
①假設每件T恤的售價提高x元,那么銷售每件T恤所獲得的利潤是____________元,銷售量是_____________________件(用含x的代數(shù)式表示);
②設應季銷售利潤為y元,請寫y與x的函數(shù)關系式;并求出應季銷售利潤為8000元時每件T恤的售價.
(2)根據(jù)銷售經(jīng)驗,過季處理時,若每件T恤的售價定為30元虧本銷售,可售出50件;若每件T恤的售價每降低1元,銷售量相應增加5條,
①若剩余100件T恤需要處理,經(jīng)過降價處理后還是無法銷售的只能積壓在倉庫,損失本金;若使虧損金額最小,每件T恤的售價應是多少元?
②若過季需要處理的T恤共m件,且100≤m≤300,過季虧損金額最小是__________________________元(用含m的代數(shù)式表示).(注:拋物線頂點是)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,AC交⊙O于點E,∠BAC=45°,給出以下五個結論:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正確的序號是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果公司以2元/千克的成本購進10000千克柑橘,銷售人員在銷售過程中隨機抽取柑橘進行“柑橘損壞率”統(tǒng)計,并繪制成如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息解決下面問題:
(1)柑橘損壞的概率估計值為 ;估計這批柑橘完好的質量為 千克.
(2)若希望這批柑橘能夠獲得利潤5000元,那么在出售柑橘(只賣好果)時,每千克大約定價為多少元比較合適?(精確到0.1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校需要添置教師辦公桌椅A、B兩型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.
(1)求A,B兩型桌椅的單價;
(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要運費10元.設購買A型桌椅x套時,總費用為y元,求y與x的函數(shù)關系式,并直接寫出x的取值范圍;
(3)求出總費用最少的購置方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A為反比例函數(shù)y=(其中x>0)圖象上的一點,在x軸正半軸上有一點B,OB=4.連接OA、AB,且OA=AB=2.
(1)求k的值;
(2)過點B作BC⊥OB,交反比例函數(shù)y=(x>0)的圖象于點C.
①連接AC,求△ABC的面積;
②在圖上連接OC交AB于點D,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD切⊙O于點C,BE⊥CD于E,連接AC,BC.
(1)求證:BC平分∠ABE;
(2)若⊙O的半徑為3,cosA=,求CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com