15.如圖:拋物線y=ax2+bx+c交y軸于點(diǎn)C(0,4),對(duì)稱軸x=2與x軸交于點(diǎn)D,頂點(diǎn)為M,且DM=OC+OD,
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P(x,y)是第一象限內(nèi)該拋物線上的一個(gè)動(dòng)點(diǎn),△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求當(dāng)x取多少時(shí),S的值最大,最大是多少?

分析 (1)由OC與OD的長,求出MD的長,確定出M坐標(biāo),設(shè)y=a(x-2)2+6,把C坐標(biāo)代入求出a的值,即可確定出拋物線解析式;
(2)由拋物線解析式設(shè)出P坐標(biāo),過點(diǎn)P做x軸的垂線,交x軸于點(diǎn)E,利用表示出的點(diǎn)P的坐標(biāo)確定出線段PE、DE的長,用梯形OCPE的面積減去直角三角形OCD的面積和直角三角形PDE的面積,進(jìn)而得出S與x的函數(shù)解析式,利用二次函數(shù)性質(zhì)求出S最大值時(shí)x的值即可.

解答 解:(1)∵OC=4,OD=2,
∴DM=6,
∴點(diǎn)M(2,6),
設(shè)y=a(x-2)2+6,代入(0,4)得:a=-$\frac{1}{2}$,
∴該拋物線解析式為y=-$\frac{1}{2}$(x-2)2+6;


(2)設(shè)點(diǎn)P(x,-$\frac{1}{2}$ (x-2)2+6),即(x,-$\frac{1}{2}$x2+2x+4),x>0,
過點(diǎn)P作x軸的垂線,交x軸于點(diǎn)E,
則PE=-$\frac{1}{2}$x2+2x+4,DE=x-2,
S=$\frac{1}{2}$x(-$\frac{1}{2}$x2+2x+4+4)-$\frac{1}{2}$×2×4-$\frac{1}{2}$(x-2)(-$\frac{1}{2}$x2+2x+4),
即S=-$\frac{1}{2}$x2+4x=-$\frac{1}{2}$(x-4)2+8,
∴當(dāng)x=4時(shí),S有最大值為8.

點(diǎn)評(píng) 此題考查了待定系數(shù)法求二次函數(shù)解析式,以及二次函數(shù)的最值,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.用代數(shù)式表示:“x的5倍與y的和的一半”$\frac{1}{2}(5x+y)$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.$\sqrt{64}$相反數(shù)的立方根是-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.某學(xué)校組織了一次“五城聯(lián)創(chuàng)”知識(shí)競賽活動(dòng),根據(jù)初賽成績分別從三個(gè)年級(jí)中選出了10名同學(xué)參加決賽,成績統(tǒng)計(jì)如下:
決賽成績(單位:分)
七年級(jí)82 86 88 81 88 97 80 74 90 89
八年級(jí)85 88 87 97 85 76 88 80 86 88
九年級(jí)81 83 79 79 79 92 99 88 89 86
(1)補(bǔ)全下面的表格:
年紀(jì) 平均數(shù) 眾數(shù) 中位數(shù)
 七年級(jí) 85.588 87
 八年級(jí)86 8886.5
 九年級(jí) 85.5 7984.5
(2)從以下兩個(gè)方面對(duì)三個(gè)年紀(jì)的成績進(jìn)行評(píng)價(jià):
①從平均數(shù)和眾數(shù)方面分析,八年級(jí)成績較好;
②從中位數(shù)和眾數(shù)方面分析,七年級(jí)成績較好;
(3)學(xué)校決定根據(jù)決賽成績,從某個(gè)年級(jí)中選出3人參加總決賽,你認(rèn)為該選取哪個(gè)年紀(jì)的學(xué)生參賽?并寫出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.定義:如果點(diǎn)C將線段AB分成兩條線段AC和BC,若$\frac{AC}{AB}$=2×$\frac{BC}{AC}$,那么稱點(diǎn)C為線段AB的和諧點(diǎn),$\frac{AC}{AB}$的比值稱為和諧比.
(1)如圖1,若線段AB的長為1,點(diǎn)C是線段AB的和諧點(diǎn),求線段AC的長以及和諧比.
(2)如圖2①,在△ABC中,CE是AB邊上的高線,點(diǎn)D是AB邊上一點(diǎn),∠A=45°,∠ADC=60°,ED=BD,現(xiàn)給出如下命題:
①命題1:點(diǎn)D是線段AB的和諧點(diǎn);
②命題2:點(diǎn)E是線段AD的和諧點(diǎn).
判斷命題是真命題還是假命題.
(3)如圖2②,點(diǎn)C是線段AB的和諧點(diǎn),⊙O是等邊三角形ACD的外接圓,連接BD交⊙O于點(diǎn)E,連接AE交DC于點(diǎn)F,若等邊三角形的邊長為m,請(qǐng)用含m對(duì)的代數(shù)式表示線段DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.閱讀:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1.
由上面的規(guī)律得(x-1)(xn+xn-1+…+x+1)=xn+1-1(n為正整數(shù));
根據(jù)這一規(guī)律進(jìn)行計(jì)算:22014-22013+22012-22011+22010…-23+22-2+1=$\frac{{2}^{2015}+1}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在四邊形ABCD中,AB=AD,∠BAD=∠C=60°,點(diǎn)E為四邊形ABCD內(nèi)部一點(diǎn),連接AE、BE,∠AEB=∠CBE=90°,BC=3,則線段BE的長為$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.若$\frac{1}{5}$x3y2k+1與-$\frac{7}{3}$x3y7的和是個(gè)單項(xiàng)式,則k=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.筆記本的單價(jià)是x元,圓珠筆的單價(jià)是y元,小紅買3本筆記本,2支圓珠筆,小明買4本筆記本,3支圓珠筆.買這些筆記本和圓珠筆,小紅和小明一共花了多少錢?

查看答案和解析>>

同步練習(xí)冊答案