精英家教網 > 初中數學 > 題目詳情
如圖1,已知正方形ABCD的邊長為,點M是AD的中點,P是線段MD上的一動點(P不與M,D重合),以AB為直徑作⊙O,過點P作⊙O的切線交BC于點F,切點為E。
(1)除正方形ABCD的四邊和⊙O中的半徑外,圖中還有哪些相等的線段(不能添加字母和輔助線);(2)求四邊形CDPF的周長;
(3)延長CD,FP相交于點G,如圖2所示,是否存在點P,使BF·FG=CF·OF?如果存在,試求此時AP的長;如果不存在,請說明理由。

解:(1)FB=FE ,PE=PA;
(2)四邊形CDPF的周長為:
FC+CD+DP+PE+EF=FC+CD+DP+PA+BF
=BF+FC+CD+DP+PA
=BC+CD+DA 
=×3=;
(3)存在,
,則
∵cos∠OFB=,cos∠GFC=
∴∠OFB=∠GFC
又∵∠OFB=∠OFE
∴∠OFE=∠OFB=∠GFC=,
∴在中,FE=FB==1
∴在
CG=


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

14、如圖1,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE,GC.

(1)試猜想AE與GC有怎樣的位置關系,并證明你的結論;
(2)將正方形DEFG繞點D按順時針方向旋轉,使點E落在BC邊上,如圖2,連接AE和GC.你認為(1)中的結論是否還成立?若成立,給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

作圖題
(1)如圖1,已知?ABCD兩邊長分別是1和2,一個內角為60°,將?ABCD剪一刀成兩部分,并拼成一個等腰三角形.要求在原圖上畫出剪切線和組成的等腰三角形,并填寫等腰三角形的周長(本題不限作圖工具)
圖1,周長=
6
6
                      
圖2,周長=
2+2
17
2+2
17

(2)如圖2,已知正方形ABCD邊長為2,將正方形剪兩刀成三部分,并拼成一個等腰非直角三角形,要求在原圖上畫出剪切線和拼成的三角形,并填出等腰三角形的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•孝感)如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)圖1中若點E是邊BC的中點,我們可以構造兩個三角形全等來證明AE=EF,請敘述你的一個構造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標系中,當點E滑動到某處時,點F恰好落在拋物線y=-x2+x+1上,求此時點F的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1)如圖1,已知正方形ABCD與正方形DEFG,點A、D、E三點共線,則S△ADG
=
=
S△DCE(填“>”,“<”或“=”)
(2)如圖2,將圖1中正方形DEFG繞點D,逆時針轉到如圖的位置,則S△ADG
=
=
S△DCE(填“>”,“<”或“=”)
請說明理由.
(3)如圖3,以△ABC三邊向外作三個正方形,分別為正方形AEDC、正方形CFGB正方形ABHK,并且△ABC的邊AC長為5,邊AB長為4,則三角形AKE,三角形CDF,三角形BGH的面積和的最大值為
30
30

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,已知正方形OABC的邊長為4,等腰直角三角板OEF的直角邊OE、OF分別在OA、OC上,且OE=2.將三角板OEF繞點O逆時針旋轉至OE1F1的位置,旋轉角為α,連接CF1、AE1
(1)請在圖2中畫出三夾板OEF逆時針旋轉90°時的圖形,并直接判斷此時△OAE1與△OCF1是否全等.
(2)當0°<α<90°時,∠OAE1與∠OCF1是否總有上述關系并加以證明;
(3)若三角板OEF繞O點逆時針旋轉一周,是否存在某一位置,使得OE1∥CF1?若存在,請求出旋轉角α的度數;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案