含30°角的直角三角板ABC中,∠A=30°.將其繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C邊與AB所在直線交于點(diǎn)D,過點(diǎn) D作DE∥A'B'交CB'邊于點(diǎn)E,連接BE.
(1)如圖1,當(dāng)A'B'邊經(jīng)過點(diǎn)B時(shí),α=
60
60
°;
(2)在三角板旋轉(zhuǎn)的過程中,若∠CBD的度數(shù)是∠CBE度數(shù)的m倍,猜想m的值并證明你的結(jié)論;
(3)設(shè)BC=1,AD=x,△BDE的面積為S,以點(diǎn)E為圓心,EB為半徑作⊙E,當(dāng)S=
13
S△ABC
時(shí),求AD的長(zhǎng),并判斷此時(shí)直線A'C與⊙E的位置關(guān)系.
分析:(1)有旋轉(zhuǎn)可得出∠α;
(2)①如圖1,點(diǎn)D在AB邊上時(shí),m=2;②如圖2,點(diǎn)D在AB的延長(zhǎng)線上時(shí),m=4.由相似和旋轉(zhuǎn)的性質(zhì)得出∠A=∠CBE=30°.從而得出m的值;
(3)先求得△ABC的面積,再由△CAD∽△CBE,求得BE,分情況討論:①當(dāng)點(diǎn)D在AB邊上時(shí),AD=x,BD=AB-AD=2-x,得出直線A′C與⊙E相切.②當(dāng)點(diǎn)D在AB的延長(zhǎng)線上時(shí),AD=x,BD=x-2,得出直線A′C與⊙E相交.
解答:解:(1)當(dāng)A′B′過點(diǎn)B時(shí),α=60°;

(2)猜想:①如圖1,點(diǎn)D在AB邊上時(shí),m=2;
②如圖2,點(diǎn)D在AB的延長(zhǎng)線上時(shí),m=4.
證明:①當(dāng)0°<α<90°時(shí),點(diǎn)D在AB邊上(如圖1).
∵DE∥A′B′,
CD
CA′
=
CE
CB′

由旋轉(zhuǎn)性質(zhì)可知,CA=CA′,CB=CB′,∠ACD=∠BCE.
CD
CA
=
CE
CB

∴△CAD∽△CBE.
∴∠A=∠CBE=30°.
∵點(diǎn)D在AB邊上,∠CBD=60°,
∴∠CBD=2∠CBE,即m=2.
②當(dāng)90°<α<120°時(shí),點(diǎn)D在AB的延長(zhǎng)線上(如圖2).
與①同理可得∠A=∠CBE=30°.
∵點(diǎn)D在AB的延長(zhǎng)線上,∠CBD=180°-∠CBA=120°,
∴∠CBD=4∠CBE,
即m=4;

(3)在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,
∴AB=2,AC=
3
S△ABC=
3
2

由△CAD∽△CBE得
AD
AC
=
BE
BC

∵AD=x,
x
3
=
BE
1
BE=
3
3
x

①當(dāng)點(diǎn)D在AB邊上時(shí),AD=x,BD=AB-AD=2-x,∠DBE=90°.
此時(shí),S=S△BDE=
1
2
BD×BE=
1
2
(2-x)×
3
x
3
=
-
3
x2+2
3
x
6

當(dāng)S=
1
3
S△ABC
時(shí),
-
3
x2+2
3
x
6
=
3
6

整理,得x2-2x+1=0.
解得x1=x2=1,即AD=1.
此時(shí)D為AB中點(diǎn),∠DCB=60°,∠BCE=30°=∠CBE.(如圖3)

∴EC=EB.
∵∠A′CB′=90°,點(diǎn)E在CB′邊上,
∴圓心E到A′C的距離EC等于⊙E的半徑EB.
∴直線A′C與⊙E相切.
②當(dāng)點(diǎn)D在AB的延長(zhǎng)線上時(shí),AD=x,BD=x-2,∠DBE=90°.(如圖2).S=S△BDE=
1
2
BD×BE=
1
2
(x-2)×
3
x
3
=
3
x2-2
3
x
6

當(dāng)S=
1
3
S△ABC
時(shí),
3
x2-2
3
x
6
=
3
6

整理,得x2-2x-1=0.
解得x1=1+
2
,x2=1-
2
(負(fù)值,舍去).
AD=1+
2

此時(shí)∠BCE=α,而90°<α<120°,∠CBE=30°,
∴∠CBE<∠BCE.
∴EC<EB,即圓心E到A′C的距離EC小于⊙E的半徑EB.
∴直線A′C與⊙E相交.
點(diǎn)評(píng):本題考查了直線和圓的位置關(guān)系,相似三角形的判定和性質(zhì)以及旋轉(zhuǎn)的性質(zhì),是一道綜合題,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、把兩個(gè)一樣大的含30°角的直角三角板按如圖的方式拼在一起,其中AC平分∠BAF,AD平分∠EAF,請(qǐng)寫出所有的等腰三角形:
△ABE,△ACD,△ABC,△ADE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC為等腰三角形,AB=AC,∠BAC=120°,O為BC邊的中點(diǎn),將-含30°角的直角三角板PQR放置到△ABC上,使得P點(diǎn)與O點(diǎn)重合,將三角板繞著O點(diǎn)旋轉(zhuǎn),在旋轉(zhuǎn)過程中,PQ、PR分別與直線AB、AC交于點(diǎn)E、F:
(1)當(dāng)PQ、PR分別與線段AB、AC交于點(diǎn)E、F時(shí)(如圖a),求證:∠BEO=∠COF;
(2)當(dāng)PQ、PR分別與直線AB、AC交于點(diǎn)E、F時(shí)(如圖b、圖c),∠BEO與∠COF的大小關(guān)系是否改變?請(qǐng)直接寫出結(jié)論;
(3)在圖c中,連接EF,若AB=4,BE=
3
,求CF的長(zhǎng).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•威海)操作發(fā)現(xiàn)
將一副直角三角板如圖①擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊與含30°角的直角三角板DEF的長(zhǎng)直角邊DE重合.
問題解決
將圖①中的等腰直角三角板ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)30°,點(diǎn)C落在BF上,AC與BD交于點(diǎn)O,連接CD,如圖②.
(1)求證:△CDO是等腰三角形;
(2)若DF=8,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大慶模擬)小明在玩一副三角板時(shí)發(fā)現(xiàn):含45°角的直角三角板的斜邊可與含30°角的直角三角板的較長(zhǎng)直角邊完全重合(如圖①).即△C′DA′的頂點(diǎn)A′、C′分別與△BAC的頂點(diǎn)A、C重合.現(xiàn)在,他讓△C′DA′固定不動(dòng),將△BAC通過變換使斜邊BC經(jīng)過△C′DA′的直角頂點(diǎn)D.
(1)如圖②,將△BAC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)角度α(0°<α<180°),使BC邊經(jīng)過點(diǎn)D,則α=
15
15
°.
(2)如圖③,將△BAC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使BC邊經(jīng)過點(diǎn)D.試說明:BC∥A′C′.
(3)如圖④,若AB=
2
,將△BAC沿射線A′C′方向平移m個(gè)單位長(zhǎng)度,使BC邊經(jīng)過點(diǎn)D,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一位同學(xué)用一個(gè)含30°角的直角三角板估測(cè)學(xué)校的旗桿AB的高度,他將30°角的直角邊水平放在1.3米高的支架CD上,三角板的斜邊與旗桿的頂點(diǎn)在同一直線上,他又量得D、B的距離為15米,則旗桿AB的高度為( 。
3
≈1.73,結(jié)果精確到0.1m)

查看答案和解析>>

同步練習(xí)冊(cè)答案