【題目】如圖,拋物線yax2bxc(a≠0)的頂點和該拋物線與y軸的交點在一次函數(shù)ykx1(k≠0)的圖象上,它的對稱軸是x1.有下列四個結論,①. abc0; . a<-;③. a=-k;④. 0x1時,axbk,其中正確結論的個數(shù)是( )

A.1B.2C.3D.4

【答案】D

【解析】

據(jù)二次函數(shù)的性質(zhì)、方程與二次函數(shù)的關系、函數(shù)與不等式的關系一一判斷即可.

解:由圖象可知:a0,b0,c0,故abc0,故①正確;

拋物線y=ax2+bx+ca≠0)的頂點和該拋物線與y軸的交點在一次函數(shù)y=kx+1k≠0)的圖象上

∴c=1,

x=-1時,a-b+1<0

∴a+2a+1<0,

∴a<,故②正確;

x=1時,a+b+1=k+1

∴a-2a+1=k+1,

∴a=-k,故③正確;

由圖象可知,當0x1時,ax2+bx+1kx+1,

∴ax+bk,故④正確;

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax+bx+c的圖象如圖所示,下列結論:①abc>0;b<a+c;4a+2b+c>0;a+b+c>m(am+b)+c(m1的實數(shù)),其中正確的結論有 ( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點坐標分別為T(1,1),A(2,3),B(3,3),C(4,2).

(1)以點T(1,1)為位似中心,在位似中心的同側將四邊形TABC放大為原來的2倍,放大后點A,B,C的對應點分別為A′,B′,C′畫出四邊形TA′B′C′;

(2)寫出點A′,B′,C′的坐標:

A′   ,B′   ,C′   ;

(3)(1)中,若D(a,b)為線段AC上任一點,則變化后點D的對應點D′的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里裝有若干個除顏色外其余均相同的紅、黃、藍三種顏色的小球,其中紅球2個,籃球1個,若從中任意摸出一個球,摸到球是紅球的概率為

1)求袋中黃球的個數(shù);

2)第一次任意摸出一個球(不放回),第二次再摸出一個球,求兩次摸到球的顏色是紅色與黃色這種組合(不考慮紅、黃球順序)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小美周末來到公園,發(fā)現(xiàn)在公園一角有一種守株待兔游戲.游戲設計者提供了一只兔子和一個有A,B,C,D,E五個出入口的兔籠,而且籠內(nèi)的兔子從每個出入口走出兔籠的機會是均等的.規(guī)定:①玩家只能將小兔從A,B兩個出入口放入:②如果小兔進入籠子后選擇從開始進入的出入口離開,則可獲得一只價值4元的小兔玩具,否則應付費3元.

1)請用畫樹狀圖的方法,列舉出該游戲的所有可能情況;

2)小美得到小兔玩具的機會有多大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種賀卡原售價每張1元,甲商店這種賀卡七折優(yōu)惠,而在乙商店這種賀卡除了八折優(yōu)惠外,購買30張以上(含30張)免費送5. 設一次買這種賀卡x張(x是正整數(shù)且30≤x≤50),若選擇在甲商店購買需用y1元,若選擇在乙商店購買需用y2.

1)假定你代購買45張這種賀卡,請確定應在哪一個商店買花錢較少;

2)請分別寫出y1()x()y2()x()之間的函數(shù)關系式;

3)在x的取值范圍內(nèi),試討論在哪一個商店買花錢較少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖△ABC≌△DEC,公共頂點為CBDE上,則有結論①∠ACD=∠BCE=∠ABD;②∠DAC+DBC180°;③△ADC∽△BEC;④CDAB,其中成立的是( 。

A.①②③B.只有②④C.只有①和②D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列材料,然后解答問題.

材料:從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線例如:如圖,AD把△ABC分成△ABD與△ADC,若△ABD是等腰三角形,且△ADC∽△BAC,那么AD就是△ABC的完美分割線.

解答下列問題:

1)如圖,在△ABC中,∠B40°,AD是△ABC的完美分割線,且△ABD是以AD為底邊的等腰三角形,則∠CAD   度.

2)在△ABC中,∠B42°,AD是△ABC的完美分割線,且△ABD是等腰三角形,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,, ,,,點上,于點,于點,當時,________

查看答案和解析>>

同步練習冊答案