【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),拋物線的對(duì)稱軸DE交x軸于點(diǎn)E,連接BD.

(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是線段BD上一點(diǎn),當(dāng)PE=PC時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)P作PF⊥x軸于點(diǎn)F,G為拋物線上一動(dòng)點(diǎn),M為x軸上一動(dòng)點(diǎn),N為直線PF上一動(dòng)點(diǎn),當(dāng)以F、M、N、G為頂點(diǎn)的四邊形是正方形時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo).

【答案】
(1)

解:∵拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點(diǎn),

,

解得, ,

∴經(jīng)過A,B,C三點(diǎn)的拋物線的函數(shù)表達(dá)式為y=﹣x2+2x+3


(2)

解:如圖1,連接PC、PE,

x=﹣ =﹣ =1,

當(dāng)x=1時(shí),y=4,

∴點(diǎn)D的坐標(biāo)為(1,4),

設(shè)直線BD的解析式為:y=mx+n,

,

解得, ,

∴直線BD的解析式為y=﹣2x+6,

設(shè)點(diǎn)P的坐標(biāo)為(x,﹣2x+6),

則PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,

∵PC=PE,

∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,

解得,x=2,

則y=﹣2×2+6=2,

∴點(diǎn)P的坐標(biāo)為(2,2)


(3)

解:設(shè)點(diǎn)M的坐標(biāo)為(a,0),則點(diǎn)G的坐標(biāo)為(a,﹣a2+2a+3),

∵以F、M、N、G為頂點(diǎn)的四邊形是正方形,

∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,

當(dāng)2﹣a=﹣a2+2a+3時(shí),

整理得,a2﹣3a﹣1=0,

解得,a= ,

當(dāng)2﹣a=﹣(﹣a2+2a+3)時(shí),

整理得,a2﹣a﹣5=0,

解得,a= ,

∴當(dāng)以F、M、N、G為頂點(diǎn)的四邊形是正方形時(shí),點(diǎn)M的坐標(biāo)為( ,0),( ,0),( ,0),( ,0)


【解析】(1)利用待定系數(shù)法求出過A,B,C三點(diǎn)的拋物線的函數(shù)表達(dá)式;(2)連接PC、PE,利用公式求出頂點(diǎn)D的坐標(biāo),利用待定系數(shù)法求出直線BD的解析式,設(shè)出點(diǎn)P的坐標(biāo)為(x,﹣2x+6),利用勾股定理表示出PC2和PE2 , 根據(jù)題意列出方程,解方程求出x的值,計(jì)算求出點(diǎn)P的坐標(biāo);(3)設(shè)點(diǎn)M的坐標(biāo)為(a,0),表示出點(diǎn)G的坐標(biāo),根據(jù)正方形的性質(zhì)列出方程,解方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】植樹節(jié)來(lái)臨之際,學(xué)校準(zhǔn)備購(gòu)進(jìn)一批樹苗,已知2棵甲種樹苗和5棵乙種樹苗共需113元;3棵甲種樹苗和2棵乙種樹苗共需87元.

(1)求一棵甲種樹苗和一棵乙種樹苗的售價(jià)各是多少元?

(2)學(xué)校準(zhǔn)備購(gòu)進(jìn)這兩種樹苗共100棵,并且乙種樹苗的數(shù)量不多于甲種樹苗數(shù)量的2倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并求出此時(shí)的總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為t(s).

(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),△ACP與△BPQ是否全等,請(qǐng)說明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;

(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)EF分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BPEF于點(diǎn)Q,對(duì)于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是( )

A. ①② B. ②③ C. ①③ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列推理過程,將空白部分補(bǔ)充完整.

(1)如圖1,∠ABC=∠A1B1C1,BD,B1D1分別是∠ABC,∠A1B1C1的角平分線,對(duì)∠DBC=∠D1B1C1進(jìn)行說理.

理由:因?yàn)锽D,B1D1分別是∠ABC,∠A1B1C1的角平分線

所以∠DBC=   ,∠D1B1C1=   (角平分線的定義)

又因?yàn)?/span>∠ABC=∠A1B1C1

所以∠ABC=∠A1B1C1

所以∠DBC=∠D1B1C1   

(2)如圖2,EF∥AD,∠1=∠2,∠B=40°,求CDG的度數(shù).

因?yàn)镋F∥AD,

所以∠2=      

又因?yàn)?/span>∠1=∠2 (已知)

所以∠1=   (等量代換)

所以AB∥GD(   

所以∠B=      

因?yàn)?/span>B=40°(已知)

所以∠CDG=   (等量代換)

(3)下面是積的乘方的法則“的推導(dǎo)過程,在括號(hào)里寫出每一步的依據(jù).

因?yàn)椋?/span>ab)n=   

=   

=anbn   

所以(ab)n=anbn

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形中陰影部分的面積相等的是( )

A.②③
B.③④
C.①②
D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y= 的圖象上.若點(diǎn)B在反比例函數(shù)y= 的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A( ,1)在反比例函數(shù)y= 的圖象上.

(1)求反比例函數(shù)y= 的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP= S△AOB , 求點(diǎn)P的坐標(biāo);
(3)若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上.

查看答案和解析>>

同步練習(xí)冊(cè)答案