【題目】如圖,點M是Rt△ABC的斜邊AB的中點,連接CM,作線段CM的垂直平分線,分別交邊CB和CA的延長線于點D、E,若∠C=90°,AB=20,tanB= ,則DE=

【答案】
【解析】解:∵∠C=90°,tanB= , 設AC=2k,BC=5k,
∴AB= = k=20,
∴k=
∴BC= ,
連接DM,

∵∠C=90°,點M是Rt△ABC的斜邊AB的中點,
∴AM=CM=BM AB=10,
∴∠MCB=∠B,
∵DE是線段CM的垂直平分線,
∴CD=DM,
∴∠DCM=∠DMC,
∴△CDM∽△CMB,
=
∴CD= ,
∵DE垂直平分CM,
∴∠E+∠ECN=∠ECN+∠NCD=90°,
∴∠E=∠NCD,
∴△CDE∽△CDN,
=
∵DN= =2,
∴DE= =
所以答案是:
【考點精析】掌握線段垂直平分線的性質(zhì)和解直角三角形是解答本題的根本,需要知道垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構成各種拼圖.
(1)若乙固定在E處,移動甲后黑色方塊構成的拼圖是軸對稱圖形的概率是
(2)若甲、乙均可在本層移動. ①用樹形圖或列表法求出黑色方塊所構拼圖是軸對稱圖形的概率.
②黑色方塊所構拼圖是中心對稱圖形的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)若多邊形的內(nèi)角和為 2340°,求此多邊形的邊數(shù);

(2)一個 n 邊形的每個外角都相等,如果它的內(nèi)角與相鄰外角的度數(shù)之比為 13: 2,求 n 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD 相交于點O,∠AOD=3BOD+20°.

(1)求∠BOD的度數(shù);

(2)O為端點引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系上,△ABC的頂點A和C分別在x軸、y軸的正半軸上,且AB∥y軸,點B(1,3),將△ABC以點B為旋轉(zhuǎn)中心順時針方向旋轉(zhuǎn)90°得到△DBE,恰好有一反比例函數(shù)y= 圖象恰好過點D,則k的值為(
A.6
B.﹣6
C.9
D.﹣9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(﹣2,0),點B的坐標為(0,n),以點B為直角頂點,點C在第二象限內(nèi),作等腰直角△ABC.則點C的坐標是_____(用字母n表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某電腦公司有A型、B型、C型三種型號的電腦,其價格分別為A型每臺6 000元,B型每臺4 000元,C型每臺2 500元,我市東坡中學計劃將100 500元錢全部用于該電腦公司購進其中兩種不同型號的電腦共36臺,請你設計出幾種不同的購買方案供該校選擇,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2)…按這樣的運動規(guī)律,經(jīng)過第2015次運動后,動點P的坐標是____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A、C的坐標分別為A(-4,5),C(-1,3).

(1)請在網(wǎng)格平面內(nèi)作出平面直角坐標系(不寫作法);

(2)請作出△ABC關于y軸對稱△A'B'C';

(3)分別寫出A'、B'、C'的坐標.

查看答案和解析>>

同步練習冊答案