已知四邊形ABCD是正方形,O為正方形對角線的交點,一動點P從B開始,沿射線BC運動,連結(jié)DP,作CN⊥DP于點M,且交直線AB于點N,連結(jié)OP,ON。(當(dāng)P在線段BC上時,如圖1:當(dāng)P在BC的延長線上時,如圖2)
(1)請從圖1,圖2中任選一圖證明下面結(jié)論:
①BN=CP:   ②OP=ON,且OP⊥ON
(2) 設(shè)AB=4,BP=x,試確定以O(shè)、P、B、N為頂點的四邊形的面積y與x的函數(shù)關(guān)系。

(1)證明:如圖1,
①∵四邊形ABCD是正方形,
∴OC=OB,DC=BC,∠DCB=∠CBA=90°,∠OCB=∠OBA=45°,∠DOC=90°,DC∥AB。
∵DP⊥CN,∴∠CMD=∠DOC=90°。
∴∠BCN+∠CPD=90°,∠PCN+∠DCN=90°!唷螩PD=∠CNB。
∵DC∥AB,∴∠DCN=∠CNB=∠CPD。
∵在△DCP和△CBN中,∠DCP=∠CBN,∠CPD=∠BNC,DC=BC,
∴△DCP≌△CBN(AAS)!郈P=BN。
②∵在△OBN和△OCP中,OB=OC,∠OCP=∠OBN, CP="BN" ,
∴△OBN≌△OCP(SAS)!郞N=OP,∠BON=∠COP。
∴∠BON+∠BOP=∠COP+∠BOP,即∠NOP=∠BOC=90°。
∴ON⊥OP。
(2)解:∵AB=4,四邊形ABCD是正方形,∴O到BC邊的距離是2。
圖1中,
圖2中,
∴以O(shè)、P、B、N為頂點的四邊形的面積y與x的函數(shù)關(guān)系是:
 。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、已知四邊形ABCD是矩形,當(dāng)補充條件
AB=AD
(用字母表示)時,就可以判定這個矩形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是正方形,M、N分別是邊BC、CD上的動點,正方形ABCD的邊長為4cm.

(1)如圖①,O是正方形ABCD對角線的交點,若OM⊥ON,求四邊形MONC的面積;
(2)如圖②,若∠MAN=45°,求△MCN的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是正方形,M、N分別是邊BC,CD上的動點.
(1)如圖①,設(shè)O是正方形ABCD對角線的交點,若OM⊥ON,求證:BM=CN,
(2)在(1)的條件下,若正方形ABCD的邊長為4cm,求四邊形MONC的面積;
(3)如圖②,若∠MAN=45°試說明△MCN的周長等于正方形ABCD周長的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是平行四邊形,則下列結(jié)論中哪一個不滿足平行四邊形的性質(zhì)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是菱形,點E、F分別是邊CD、AD的中點,若AE=3cm,那么CF=
3
3
cm.

查看答案和解析>>

同步練習(xí)冊答案