如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

(1)求出一元二次函數(shù)的關(guān)系式;
(2)點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)軸的垂線,垂足為.若,的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)在(2)的條件下,當(dāng)點(diǎn)坐標(biāo)是           時(shí),為直角三角形.
(1);(2));
(3)、

試題分析:(1)由可得、,即可根據(jù)待定系數(shù)法求解;
(2)易得,設(shè),根據(jù)待定系數(shù)法求得一次函數(shù)解析式,再根據(jù)三角形的面積公式求解即可;
(3)根據(jù)二次函數(shù)的性質(zhì)及直角三角形的性質(zhì)分類討論即可.
(1)由可得
,
所以;
(2)易得
設(shè)
解得
所以
所以,
);
(3)
點(diǎn)評(píng):此類問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司營銷A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)研,發(fā)現(xiàn)如下信息:
信息1:銷售A種產(chǎn)品所獲利潤y(萬元)與所售產(chǎn)品x(噸)之間存在二次函數(shù)關(guān)系。
當(dāng)x=1時(shí),y=1.4;當(dāng)x=3時(shí),y=3.6。
信息2:銷售B種產(chǎn)品所獲利潤y(萬元)與所售產(chǎn)品x(噸)之間存在正比例函數(shù)關(guān)系。
根據(jù)以上信息,解答下列問題:
(1)求二次函數(shù)解析式;
(2)該公司準(zhǔn)備購進(jìn)A,B兩種產(chǎn)品共10噸,請(qǐng)?jiān)O(shè)計(jì)一個(gè)營銷方案,使銷售A,B兩種產(chǎn)品獲得的利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,拋物線與x軸相交于B(1,0)、C(4,0)兩點(diǎn),與y軸的正半軸相交于A點(diǎn),過A、B、C三點(diǎn)的⊙P與y軸相切于點(diǎn)A.M為y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),直線MB交⊙P于點(diǎn)D,交拋物線于點(diǎn)N。

(1)請(qǐng)直接寫出答案:點(diǎn)A坐標(biāo)         ,⊙P的半徑為          ;
(2)求拋物線的解析式;
(3)若,求N點(diǎn)坐標(biāo);
(4)若△AOB與以A、B、D為頂點(diǎn)的三角形相似,求MB•MD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長為50米的籬笆圍成。已知墻長為26米(如圖所示),設(shè)這個(gè)苗圃園平行于墻的一邊的長為米。(1)若垂直于墻的一邊長為米,直接寫出的函數(shù)關(guān)系式及其自變量的取值范圍;(2)當(dāng)為多少米時(shí),這個(gè)苗圃園的面積最大,并求出這個(gè)最大值;(3)當(dāng)這個(gè)苗圃園的面積不小于300平方米時(shí),試結(jié)合函數(shù)圖象,求出的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=x2-2x-2的圖象如上圖所示,根據(jù)其中提供的信息,可求得使y≥1成立的x的取值范圍是             .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于二次函數(shù)y=2x2+3,下列說法中正確的是                ( )
A.它的開口方向是向下B.當(dāng)x<-1時(shí),y隨x的增大而減小
C.它的頂點(diǎn)坐標(biāo)是(2,3)D.當(dāng)x=0時(shí),y有最大值是3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,⊙Py軸相切于點(diǎn)C,與x軸交于Ax1,0),Bx2,0)兩點(diǎn),其中x1x2是方程x2-10x+16=0的兩個(gè)根,且x1<x2,連接BC,AC.

(1)求過AB、C三點(diǎn)的拋物線的解析式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△QAC的周長最小,若存在求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)點(diǎn)M在第一象限的拋物線上,當(dāng)△MBC的面積最大時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c的圖像如圖所示,反比例函數(shù)y=與正比例函數(shù)y=(b+c)x在同一坐標(biāo)系中的大致圖像可能是(    )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將拋物線向上平移3個(gè)單位,再向左平移2個(gè)單位,那么得到的拋物線的解析式為       

查看答案和解析>>

同步練習(xí)冊(cè)答案