如圖,已知A1A2=1,∠OA1A2=90°,∠A1OA2=30°,以斜邊OA2為直角邊作直角三角形,使得∠A2OA3=30°,依次以前一個直角三角形的斜邊為直角邊一直作含30°角的直角三角形,則Rt△A2010OA2011的最小邊長為( )

A.22009
B.22010
C.
D.
【答案】分析:根據(jù)含30度角的直角三角形中,30度角所對的直角邊為斜邊的一半,可分別求得A1A2、A2A3、A3A4等的值,觀察可發(fā)現(xiàn)規(guī)律,根據(jù)規(guī)律解題即可.
解答:解:由已知可求得A1A2,=1,A2A3=,A3A4=
又Rt△A2010OA2011的最小邊長為A2010A2011,
觀察可發(fā)現(xiàn)A2010A2011=
故選C.
點評:此題主要考查了含30度角的直角三角形的相關(guān)知識,屬于基礎(chǔ)題,比較簡單.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知A1A2=1,∠OA1A2=90°,∠A1OA2=30°,以斜邊OA2為直角邊作直角三角形,使得∠A2OA3=30°,依次以前一個直角三角形的斜邊為直角邊一直作含30°角的直角三角形,則Rt△A2010OA2011的最小邊長為(  )
A、22009
B、22010
C、(
2
3
)2009
D、(
2
3
)2010

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•柳州一模)如圖,已知A1A2=1,∠OA1A2=90°,∠A1OA2=30°,以斜邊OA2為直角邊作直角三角形,使得∠A2OA3=30°,依次以前一個直角三角形的斜邊為直角邊一直作含30°角的直角三角形,則Rt△A2011OA2012的最小邊長為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知A1A2=1,∠OA1A2=90°,∠A1OA2=30°,以斜邊OA2為直角邊作直角三角形,使得∠A2OA3=30°,依次以前一個直角三角形的斜邊為直角邊一直作含30°角的直角三角形,則A2A3=
4
3
4
3
;Rt△A2010OA2011的最小邊長為
2
3
2009
2
3
2009

查看答案和解析>>

科目:初中數(shù)學 來源:2012年廣西柳州市中考數(shù)學一模試卷(解析版) 題型:選擇題

如圖,已知A1A2=1,∠OA1A2=90°,∠A1OA2=30°,以斜邊OA2為直角邊作直角三角形,使得∠A2OA3=30°,依次以前一個直角三角形的斜邊為直角邊一直作含30°角的直角三角形,則Rt△A2011OA2012的最小邊長為( )

A.22010
B.22011
C.
D.

查看答案和解析>>

同步練習冊答案