【題目】如圖,點為雙曲線上的一點,連接并延長與雙曲線在第三象限交于點,為軸正半軸上一點,連接并延長與雙曲線交于點,連接、,已知的面積為6,則點的坐標(biāo)為______.
【答案】(,1)
【解析】
先求出反比例函數(shù)的關(guān)系式,設(shè)點M、N的坐標(biāo),利用雙曲線的對稱性可求出S△MON=S△BMN,這樣可得到關(guān)于兩點坐標(biāo)的關(guān)系式,聯(lián)立可求出答案.
連接ON,如圖:
∵點A(1,2)為雙曲線上,
∴,
∴反比例函數(shù)的關(guān)系式為,
由雙曲線的對稱性可知:OA=OB,
∴S△MBO=S△MAO,S△NBO=S△NAO,
∴S△MON=S△BMN=3,
設(shè)點M(0,m),N(n,),
∴S△MON=,即①,
設(shè)直線AM的關(guān)系式為,將M(0,m)A(1,2)代入得,
,
解得:,,
∴直線AM的關(guān)系式為,
把N(n,)代入得,②,
聯(lián)立①和②解得:(舍去)或,
當(dāng)時,,
∴點N的坐標(biāo)為(,1),
故答案為:(,1)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AE是∠CAB的角平分線,BM平分∠ABC交AE于點M,經(jīng)過B,M兩點的⊙O交BC于點G,交AB于點F,FB恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=6,cosC=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,過點B作BD⊥AB,點C,D都在AB上方,AD交△BCD的外接圓⊙O于點E.
(1)求證:∠CAB=∠AEC.
(2)若BC=3.
①EC∥BD,求AE的長.
②若△BDC為直角三角形,求所有滿足條件的BD的長.
(3)若BC=EC= ,則= .(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016廣西賀州市)如圖,將線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應(yīng)點A′的坐標(biāo)是( 。
A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是某小區(qū)入口抽象成的平面示意圖,已知入口BC寬4米,欄桿支點O與地面BC的距離為0.8米,當(dāng)欄桿OM升起到與門衛(wèi)室外墻AB的夾角成30°時,一輛寬2.4米,高1.6米的轎車能否從該入口的正中間位置進(jìn)入該小區(qū)?若能,請通過計算說明;若不能,請說明理由.(參考數(shù)據(jù):1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為的直徑,線段是的弦且,與相切于點,為直徑,連接,.
(1)求證:與相切;
(2)求證:;
(3)若,,求的值和線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條筆直的公路上有甲、乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車從乙地到甲地后休息2分鐘沿原路原速返回乙地設(shè)他們同時出發(fā),運動的時間為(分),與乙地的距離為(米),圖中線段EF,折線分別表示兩人與乙地距離和運動時間之間的函數(shù)關(guān)系圖象
(1)李越騎車的速度為 米/分鐘;F點的坐標(biāo)為 ;
(2)求李越從乙地騎往甲地時, 與之間的函數(shù)表達(dá)式;
(3)求王明從甲地到乙地時, 與之間的函數(shù)表達(dá)式;
(4)求李越與王明第二次相遇時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線l1:y=x2+c,當(dāng)其函數(shù)值y=1時,只有一個自變量x的值與其對應(yīng)
(1)求c的值;
(2)將拋物線l1經(jīng)過平移得到拋物線l2:y=(x﹣p)2﹣1.
①若拋物線l2與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C,記△ABC的外心為P,當(dāng)﹣1≤p≤時,求點P的縱坐標(biāo)的取值范圍;
②當(dāng)0≤x≤2時,對于拋物線l1上任意點E,拋物線l2上總存在點F,使得點E、F縱坐標(biāo)相等,求p的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com