分析 (1)證出四邊形ABDE是平行四邊形,得出AE=BD,由已知得出AE=CD,即可得出四邊形ADCE是平行四邊形.
(2)由矩形的性質(zhì)得出∠ADB=90°,由線段垂直平分線的性質(zhì)得出AB=AC即可.
解答 (1)證明:∵AE∥BC,DE∥AB,
∴四邊形ABDE是平行四邊形,
∴AE=BD,
∵點D是△ABC的邊BC的中點,
∴BD=CD,
∴AE=CD,
∴四邊形ADCE是平行四邊形.
(2)解:如果四邊形ADCE是矩形,△ABC是等腰三角形;理由如下:
∵四邊形ADCE是矩形,
∴∠ADC=90°,
∴∠ADB=90°,即AD⊥BC,
∵點D是△ABC的邊BC的中點,
∴AB=AC,
即△ABC是等腰三角形.
點評 此題主要考查了矩形的性質(zhì)、平行四邊形的判定與性質(zhì)、線段垂直平分線的性質(zhì);熟練掌握平行四邊形的判定與性質(zhì)是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
甲 | 16 | 18 | 18 | 19 | 20 | 20 | 21 | 21 | 23 | 24 |
乙 | 13 | 15 | 17 | 18 | 20 | 21 | 23 | 23 | 24 | 26 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com