如圖,已知直線y=x與拋物線交于A、B兩點.
(1)求交點A、B的坐標;
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)的函數(shù)值為y2.若y1>y2,求x的取值范圍;
(3)在該拋物線上存在幾個點,使得每個點與AB構(gòu)成的三角形為等腰三角形?并求出不少于3個滿足條件的點P的坐標.
(1)A(0,0),B(2,2)。
(2)0<x<2。
(3)符號條件的點P有4個,
其中P1(,),P2(,),P3(﹣2,2)。
【解析】
試題分析:(1)根據(jù)題意可以列出關(guān)于x、y的方程組,通過解方程組可以求得點A、B的坐標。
(2)根據(jù)函數(shù)圖象可以直接回答問題;
(3)需要分類討論:以AB為腰和以AB為底的等腰三角形。
解:(1)如圖,∵直線y=x與拋物線交于A、B兩點,
∴,解得,或。
∴A(0,0),B(2,2)。
(2)由(1)知,A(0,0),B(2,2).
∵一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)的函數(shù)值為y2,
∴當(dāng)y1>y2時,根據(jù)圖象可知x的取值范圍是:0<x<2。
(3)該拋物線上存在4個點,使得每個點與AB構(gòu)成的三角形為等腰三角形。理由如下:
∵A(0,0),B(2,2),∴B=。
根據(jù)題意,可設(shè)P(x,),
①當(dāng)PA=PB時,點P是線段AB的中垂線與拋物線的交點,
易求線段AB的中垂線的解析式為y=﹣x+2,
則,
解得,,。
∴P1(,),P2(,)。
②當(dāng)PA=AB時,根據(jù)拋物線的對稱性知,點P與點B關(guān)于y軸對稱,即P3(﹣2,2)。
③當(dāng)AB=PB時,點P4的位置如圖所示。
綜上所述,符號條件的點P有4個,
其中P1(,),P2(,),P3(﹣2,2)。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
3 |
8 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com