已知BD是等腰三角形ABC一腰上的高,且∠ABD=40°,那么△ABC的頂角的度數(shù)是________.

答案:50°,130°,80°
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•桐鄉(xiāng)市一模)已知△ABC是等腰三角形,AB=AC,∠BAC=50°.將△ABC繞點A逆時針旋轉(zhuǎn)角θ (0°<θ<180°),得到△ADE,BD和EC所在直線相交于點O.
(1)如圖1,當(dāng)θ=20°時,∠BOE=
130
130
度;
(2)當(dāng)△ABC旋轉(zhuǎn)到如圖2所在位置時,求∠BOE的度數(shù),并說明理由;
(3)如圖3,在AB和AC上分別截取點B′和C′,使AB=
3
AB′
,AC=
3
AC′
,連接B′C′,將△AB′C′繞點A逆時針旋轉(zhuǎn)角θ (0°<θ<180°),得到△ADE,BD和EC所在直線相交于點O,請利用圖3探索∠BOE的度數(shù),直接寫出結(jié)果,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC是等腰三角形,AB=AC,D為邊BC上任意一點,DE⊥AB于E,DF⊥AC于F,且E,F(xiàn)分別在邊AB,AC上.
(1)如圖a,當(dāng)△ABC是等邊三角形時,證明:AE+AF=
32
BC.
(2)如圖b,若△ABC中,∠BAC=120°,探究線段AE,AF,AB之間的數(shù)量關(guān)系,并對你的猜想加以證明.
(3)如圖c,若△ABC中,AB=10,BC=16,EF=6,利用你對(1),(2)兩題的解題思路計算出線段CD(BD>CD)的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙教版初中數(shù)學(xué)八年級上2.5直角三角形練習(xí)卷(解析版) 題型:解答題

下面是小明同學(xué)在學(xué)了等腰三角形后所做的一道題,題目是這樣的:“已知△ABC是等腰三角形,BC邊上的高恰好等于BC邊長的一半,求∠BAC的度數(shù)!

解:如圖,∵AD⊥BC,AD=BC=BD=CD,

∴∠BAD=∠B=∠C=∠CAD=45°,

∴∠BAC=90°

你認為小明的解答正確嗎?若不正確,請你將它補充完整。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年黑龍江省哈爾濱市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

已知△ABC是等腰三角形,AB=AC,D為邊BC上任意一點,DE⊥AB于E,DF⊥AC于F,且E,F(xiàn)分別在邊AB,AC上.
(1)如圖a,當(dāng)△ABC是等邊三角形時,證明:AE+AF=BC.
(2)如圖b,若△ABC中,∠BAC=120°,探究線段AE,AF,AB之間的數(shù)量關(guān)系,并對你的猜想加以證明.
(3)如圖c,若△ABC中,AB=10,BC=16,EF=6,利用你對(1),(2)兩題的解題思路計算出線段CD(BD>CD)的長.

查看答案和解析>>

同步練習(xí)冊答案