【題目】已知點(diǎn)E為正方形ABCD的邊AD上一點(diǎn),連接BE,過(guò)點(diǎn)C作CN⊥BE,垂足為M,交AB于點(diǎn)N.
(1)求證:△ABE≌△BCN;
(2)若N為AB的中點(diǎn),求tan∠ABE.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)根據(jù)正方形的性質(zhì)得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根據(jù)垂線(xiàn)和三角形內(nèi)角和定理得到∠2+∠3=90°,推出∠1=∠3,根據(jù)ASA推出△ABE≌△BCN;(2)tan∠ABE=,根據(jù)已知求出AE與AB的關(guān)系即可求得tan∠ABE.
(1)證明:∵四邊形ABCD為正方形
∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°
∵CM⊥BE,
∴∠2+∠3=90°
∴∠1=∠3
在△ABE和△BCN中,
∴△ABE≌△BCN(ASA);
(2)∵N為AB中點(diǎn),
∴BN=AB
又∵△ABE≌△BCN,
∴AE=BN=AB
在Rt△ABE中,tan∠ABE═.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:1號(hào)探測(cè)氣球從海拔5m處勻速上升,同時(shí),2號(hào)探測(cè)氣球從海拔15m處勻速上升,且兩個(gè)氣球都上升了1h.兩個(gè)氣球所在位置的海拔y(單位:m)與上升時(shí)間x(單位:min)之間的函數(shù)關(guān)系如圖所示,根據(jù)圖中的信息,下列說(shuō)法:
①上升20min時(shí),兩個(gè)氣球都位于海拔25m的高度;
②1號(hào)探測(cè)氣球所在位置的海拔關(guān)于上升時(shí)間x的函數(shù)關(guān)系式是y=x+5(0≤x≤60);
③記兩個(gè)氣球的海拔高度差為m,則當(dāng)0≤x≤50時(shí),m的最大值為15m.
其中,說(shuō)法正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,將BD向兩個(gè)方向延長(zhǎng),分別至點(diǎn)E和點(diǎn)F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,求菱形AECF的邊長(zhǎng)和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)滿(mǎn)足下列條件:①拋物線(xiàn)y=ax2+bx與直線(xiàn)y=x只有一個(gè)交點(diǎn);②對(duì)于任意實(shí)數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.
(1)求二次函數(shù)y=ax2+bx的解析式;
(2)若當(dāng)-2≤x≤r(r≠0)時(shí),恰有t≤y≤1.5r成立,求t和r的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線(xiàn)分別交BC、AC于點(diǎn)D、E.
(1)若AC=12,BC=15,求△ABD的周長(zhǎng);
(2)若∠B=20°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某養(yǎng)雞場(chǎng)有2500只雞準(zhǔn)備對(duì)外出售.從中隨機(jī)抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(Ⅰ)圖①中的值為 ;
(Ⅱ)求統(tǒng)計(jì)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ) 根據(jù)樣本數(shù)據(jù),估計(jì)這2500只雞中,質(zhì)量為的約有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,等腰Rt△ABC,等腰Rt△ADE,AB⊥AC,AD⊥AE,AB=AC,AD=AE,CD交AE、BE分別于點(diǎn)M、F
(1)求證:△DAC≌△EAB;
(2)若∠AEF=15°,EF=4,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題:
(1)如圖①,已知:.求作:射線(xiàn),使平分.(要求:尺規(guī)作圖,不寫(xiě)作法,但需保留作圖痕跡) .
(2)題(1)中作圖的依據(jù)是全等三角形判定方法中的__________.
(3)在圖②中作出,使它與關(guān)于軸對(duì)稱(chēng).
(4)在圖②中的軸上找到一點(diǎn),使的周長(zhǎng)最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(8,0).
(1)當(dāng)α=60°時(shí),△CBD的形狀是______;
(2)設(shè)AH=m
①連接HD,當(dāng)△CHD的面積等于10時(shí),求m的值;
②當(dāng)0°<α<90°旋轉(zhuǎn)過(guò)程中,連接OH,當(dāng)△OHC為等腰三角形時(shí),請(qǐng)直接寫(xiě)出m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com