附加題:
如圖等腰△ABC的底邊長為8cm,腰長為5cm,一個動點P在底邊上從B向C以O(shè).25cm/s的速度移動,請你探究,當(dāng)P運動幾秒時,P點與頂點A的連線PA與腰垂直.
分析:根據(jù)等腰三角形三線合一性質(zhì)可得到BD的長,由勾股定理可求得AD的長,再分兩種情況進(jìn)行分析:①PA⊥AC②PA⊥AB,從而可得到運動的時間.
解答:解:如圖,作AD⊥BC,交BC于點D,
∵△ABC是等腰三角形,
∴BD=CD=
1
2
BC=4cm,
在Rt△ABD中,AD=
AB2-BD2
=3,
分兩種情況:當(dāng)點P運動t秒后有PA⊥AC時,
∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,
∴PD2+32=(PD+4)2-52∴PD=2.25,
∴BP=4-2.25=1.75=0.25t,
∴t=7秒,
當(dāng)點P運動t秒后有PA⊥AB時,同理可證得PD=2.25,
∴BP=4+2.25=6.25=0.25t,
∴t=25秒,
∴點P運動的時間為7秒或25秒.
點評:此題考查了等腰三角形的性質(zhì)和勾股定理的運用,此題難度適中,解題的關(guān)鍵是分類討論思想、方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖1,Rt△ABC中AB=AC,點D、E是線段AC上兩動點,且AD=EC,AM垂直BD,垂足為M,AM的延長線交BC于點N,直線BD與直線NE相交于點F.試判斷△DEF的形狀,并加以證明.
說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②中選取一個補充或者更換已知條件,完成你的證明.

1、畫出將△BAD沿BA方向平移BA長,然后順時針旋轉(zhuǎn)90°后圖形;
2、點K在線段BD上,且四邊形AKNC為等腰梯形(AC∥KN,如圖2).
附加題:如圖3,若點D、E是直線AC上兩動點,其他條件不變,試判斷△DEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以△ABC的邊AB、AC為直角邊向外作等腰直角△ABE和△ACD,M是BC的中點,請你探究線段DE與AM之間的關(guān)系.精英家教網(wǎng)
說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路寫出來(要求至少寫3步);
(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②中選取一個補充或更換已知條件,完成你的證明.
①畫出將△ACM繞某一點順時針旋轉(zhuǎn)180°后的圖形;
②∠BAC=90°(如圖)

附加題:如圖,若以△ABC的邊AB、AC為直角邊,向內(nèi)作等腰直角△ABE和△ACD,其它條件不變,試探究線段DE與AM之間的關(guān)系.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:如圖,C是線段AB上一點,△ACD和△BCE都是等腰直角三角形,∠ADC=∠CEB=90°
(1)連接DE、M、N分別是AC、BC上一點,且∠MDC=∠CDE,∠NEC=∠CED,探索DM、DE、EN之間的數(shù)量關(guān)系,并說明理由.
(2)延長AD、BE交于F點,連接DE,CG⊥DE于G點,連接CF,CF與DE相交于O點,OC=OE,延長GC到H點,使得CH=CF,探索BF、BH的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,點P從點A出發(fā)沿AD邊向點D以1cm/s的速度移動,點Q從點C出發(fā)沿CB向點B以2cm/s的速度移動,若點P、Q分別從點A、C同時出發(fā),設(shè)移動時間為t s,則t為何值時,梯形PQCD是等腰梯形?

查看答案和解析>>

同步練習(xí)冊答案